
simfile
Release 2.1.1

Ash Garcia

Jul 31, 2023

CONTENTS

1 Installation 3

2 Quickstart 5

3 Further reading 7

4 Indices and tables 59

Python Module Index 61

Index 63

i

ii

simfile, Release 2.1.1

A modern simfile parsing & editing library for Python 3.

CONTENTS 1

simfile, Release 2.1.1

2 CONTENTS

CHAPTER

ONE

INSTALLATION

simfile is available on PyPI:

pip3 install simfile

3

simfile, Release 2.1.1

4 Chapter 1. Installation

CHAPTER

TWO

QUICKSTART

Load simfiles from disk using simfile.open() or simfile.load():

>>> import simfile
>>> springtime = simfile.open('testdata/Springtime/Springtime.ssc')
>>> springtime
<SSCSimfile: Springtime>
>>> with open('testdata/nekonabe/nekonabe.sm', 'r') as infile:
... nekonabe = simfile.load(infile)
...
>>> nekonabe
<SMSimfile: >

Use lowercase attributes to access most common properties:

>>> springtime.artist
'Kommisar'
>>> springtime.banner
'springbn.png'
>>> springtime.subtitle = '(edited)'
>>> springtime
<SSCSimfile: Springtime (edited)>

Alternatively, use uppercase strings to access the underlying dictionary:

>>> springtime['ARTIST']
'Kommisar'
>>> springtime['ARTIST'] is springtime.artist
True
>>> list(springtime.keys())[:7]
['VERSION', 'TITLE', 'SUBTITLE', 'ARTIST', 'TITLETRANSLIT', 'SUBTITLETRANSLIT',
→˓'ARTISTTRANSLIT']

Charts are stored in a list under the .charts attribute and function similarly to simfile objects:

>>> len(springtime.charts)
9
>>> chart = springtime.charts[0]
>>> chart
<SSCChart: dance-single Challenge 12>
>>> chart.stepstype
'dance-single'
>>> list(chart.keys())[:7]
['CHARTNAME', 'STEPSTYPE', 'DESCRIPTION', 'CHARTSTYLE', 'DIFFICULTY', 'METER',
→˓'RADARVALUES']

5

simfile, Release 2.1.1

6 Chapter 2. Quickstart

CHAPTER

THREE

FURTHER READING

3.1 What are simfiles?

Simfiles are the primary unit of game content for music game simulators like StepMania. These files contain song
metadata and some number of charts (also known as “stepcharts” or “maps”) that dictate the gameplay sequence.
They are accompanied by a music file and often some graphic files like banners and backgrounds.

StepMania primarily uses two simfile formats, SM and SSC. These are the two simfile formats supported by the simfile
library.

3.1.1 What’s in a simfile?

If you open a simfile in a text editor, you’ll typically be greeted with something like this:

#VERSION:0.83;
#TITLE:Springtime;
#SUBTITLE:;
#ARTIST:Kommisar;
#TITLETRANSLIT:;
#SUBTITLETRANSLIT:;
#ARTISTTRANSLIT:;
#GENRE:;
#ORIGIN:;
#CREDIT:;
#BANNER:springbn.png;
#BACKGROUND:spring.png;
[...]

StepMania uses this information to determine how to display the simfile in-game. Later in the file you’ll see timing
data, which determines how to keep simfile and audio synchronized, followed by charts containing note data, which
contains the input sequence for the player to perform. Charts are typically written by humans to follow the rhythm of
the song.

7

simfile, Release 2.1.1

3.1.2 Why do I need a library for this?

While the file format shown above seems simple, simfiles on the Internet vary greatly in formatting and data quality,
and StepMania tries its hardest to support all of these files. As a result, there are numerous edge cases and undocu-
mented features that complicate parsing of arbitrary simfiles. Here are some examples:

• Not all simfiles are encoded in UTF-8; many older files from around the world use Windows code pages instead.
StepMania tries four encodings (UTF-8 followed by three code pages) in order until one succeeds.

– simfile.open() and related functions do the same.

• Many simfiles, even modern ones, contain formatting errors such as malformed comments and missing semi-
colons. StepMania handles missing semicolons at the protocol level and emits a warning for other formatting
errors.

– simfile.open() and related functions offer a strict parameter that can be set to False to ignore
formatting errors.

• Holds and rolls are expected to have corresponding tail notes; a head note without a tail note (or vice-versa) is
an error. StepMania emits a warning and treats disconnected head notes as tap notes (and discards orphaned tail
notes).

– group_notes() can do the same on an opt-in basis.

• Some properties have legacy aliases, like FREEZES in place of STOPS. Additionally, keysounded SSC charts
use a NOTES2 property for note data instead of the usual NOTES. StepMania looks for these aliases in the
absence of the regular property name.

– Known properties on the Simfile and Chart classes do the same.

• During development of the SSC format, timing data on charts (“split timing”) was an unstable experimental
feature. Modern versions of StepMania ignore timing data from these unstable versions (prior to version 0.70).

– TimingData ignores SSC chart timing data from these older versions too.

Even if you don’t need the rich functionality of the supplementary modules and packages, the top-level simfile
module and the SMSimfile and SSCSimfile classes its functions return are thoroughly tested and offer simple,
format-agnostic APIs. While a bespoke regular expression might be sufficient to parse the majority of simfiles, the
simfile library is designed to handle any simfile that StepMania accepts, with escape hatches for error conditions nearly
everywhere an exception can be thrown.

3.2 Reading & writing simfiles

3.2.1 Opening simfiles

The top-level simfile module offers 3 convenience functions for loading simfiles from the filesystem, depending
on what kind of filename you have:

• simfile.open() takes a path to an SM or SSC file.

• simfile.opendir() takes a path to a simfile directory. (new in 2.1)

• simfile.openpack() takes a path to a simfile pack. (new in 2.1)

>>> import simfile
>>> springtime1 = simfile.open('testdata/Springtime/Springtime.ssc')
>>> springtime2, filename = simfile.opendir('testdata/Springtime')
>>> for sim, filename in simfile.openpack('testdata'):
... if sim.title == 'Springtime':

(continues on next page)

8 Chapter 3. Further reading

simfile, Release 2.1.1

(continued from previous page)

... springtime3 = sim

...
>>> print springtime1 == springtime2 and springtime2 == springtime3
True

Plus two more that don’t take filenames:

• simfile.load() takes a file object.

• simfile.loads() takes a string of simfile data.

Note: If you’re about to write this:

with open('path/to/simfile.sm', 'r') as infile:
sim = simfile.load(infile)

Consider writing sim = simfile.open('path/to/simfile.sm') instead. This lets the library determine
the correct encoding, rather than defaulting to your system’s preferred encoding. It’s also shorter and easier to remem-
ber.

The type returned by functions like open() and load() is declared as Simfile. This is a union of the two
concrete simfile types, SMSimfile and SSCSimfile:

>>> import simfile
>>> springtime = simfile.open('testdata/Springtime/Springtime.ssc')
>>> type(springtime)
<class 'simfile.ssc.SSCSimfile'>
>>> nekonabe = simfile.open('testdata/nekonabe/nekonabe.sm')
>>> type(nekonabe)
<class 'simfile.sm.SMSimfile'>

The “magic” that determines which type to use is documented under simfile.load(). If you’d rather use the
underlying types directly, instantiate them with either a file or string argument:

>>> from simfile.ssc import SSCSimfile
>>> with open('testdata/Springtime/Springtime.ssc', 'r') as infile:
... springtime = SSCSimfile(file=infile)

Note: These Simfile types don’t know about the filesystem; you can’t pass them a filename directly, nor do they
offer a .save() method (see Writing simfiles to disk for alternatives). Decoupling this knowledge from the simfile
itself enables them to live in-memory, without a corresponding file and without introducing state-specific functionality
to the core simfile classes.

3.2. Reading & writing simfiles 9

simfile, Release 2.1.1

3.2.2 Accessing simfile properties

Earlier we used the title attribute to get a simfile’s title. Many other properties are exposed as attributes as well:

>>> import simfile
>>> springtime = simfile.open('testdata/Springtime/Springtime.ssc')
>>> springtime.music
'Kommisar - Springtime.mp3'
>>> springtime.samplestart
'105.760'
>>> springtime.labels
'0=Song Start'

Refer to Known properties for the full list of attributes for each simfile format. Many properties are shared between
the SM and SSC formats, so you can use them without checking what kind of Simfile or Chart you have.

All properties return a string value, or None if the property is missing. The possibility of None can be annoying in
type-checked code, so you may want to write expressions like sf.title or "" to guarantee a string.

Attributes are great, but they can’t cover every property found in every simfile in existence. When you need to deal
with unknown properties, you can use any simfile or chart as a dictionary of uppercase property names (they all extend
OrderedDict under the hood):

>>> import simfile
>>> springtime = simfile.open('testdata/Springtime/Springtime.ssc')
>>> springtime['ARTIST']
'Kommisar'
>>> springtime['ARTIST'] is springtime.artist
True
>>> for property, value in springtime.items():
... if property == 'TITLETRANSLIT': break
... print(property, '=', repr(value))
...
VERSION = '0.83'
TITLE = 'Springtime'
SUBTITLE = ''
ARTIST = 'Kommisar'

Note: One consequence of the backing OrderedDict is that duplicate properties are not preserved. This is a rare
occurrence among existing simfiles, usually indicative of manual editing, and it doesn’t appear to have any practical
use case. However, if the loss of this information is a concern, consider using msdparser to stream the key-value pairs
directly.

3.2.3 Accessing charts

Charts are different from regular properties, because a simfile can have zero to many charts. The charts are stored in a
list under the charts attribute:

>>> import simfile
>>> springtime = simfile.open('testdata/Springtime/Springtime.ssc')
>>> len(springtime.charts)
9
>>> springtime.charts[0]
<SSCChart: dance-single Challenge 12>

10 Chapter 3. Further reading

https://msdparser.readthedocs.io/en/latest/

simfile, Release 2.1.1

To find a particular chart, use a for-loop or Python’s built-in filter function:

>>> import simfile
>>> springtime = simfile.open('testdata/Springtime/Springtime.ssc')
>>> list(filter(
... lambda chart: chart.stepstype == 'pump-single' and int(chart.meter) > 20,
... springtime.charts,
...))
...
[<SSCChart: pump-single Challenge 21>]

Much like simfiles, charts have their own “known properties” like meter and stepstype which can be fetched via
attributes, as well as a backing OrderedDict which maps uppercase keys like 'METER' and 'STEPSTYPE' to
the same string values.

Warning: Even the meter property is a string! Some simfiles in the wild have a non-numeric meter due to
manual editing; it’s up to client code to determine how to deal with this.

If you need to compare meters numerically, you can use int(chart.meter), or int(chart.meter or
'1') to sate type-checkers like mypy.

3.2.4 Editing simfile data

Simfile and chart objects are mutable: you can add, change, and delete properties and charts through the usual Python
mechanisms.

Changes to known properties are kept in sync between the attribute and key lookups; the attributes are Python proper-
ties that use the key lookup behind the scenes.

>>> import simfile
>>> springtime = simfile.open('testdata/Springtime/Springtime.ssc')
>>> springtime.subtitle = '(edited)'
>>> springtime
<SSCSimfile: Springtime (edited)>
>>> springtime.charts.append(SMChart())
>>> len(springtime.charts)
10
>>> del springtime.displaybpm
>>> 'DISPLAYBPM' in springtime
False

If you want to change more complicated data structures like timing and note data, refer to Timing & note data for an
overview of the available classes & functions, rather than operating on the string values directly.

>>> import simfile
>>> from simfile.notes import NoteData
>>> springtime = simfile.open('testdata/Springtime/Springtime.ssc')
>>> first_chart = springtime.charts[0]
>>> notedata = NoteData(first_chart)
>>> # (...modify the note data...)
>>> first_chart.notes = str(notedata)

Note: The keys of an SMChart are static; they can’t be added or removed, but their values can be replaced.

3.2. Reading & writing simfiles 11

simfile, Release 2.1.1

3.2.5 Writing simfiles to disk

There are a few options for saving simfiles to the filesystem. If you want to read simfiles from the disk, modify them,
and then save them, you can use the simfile.mutate() context manager:

>>> import simfile
>>> input_filename = 'testdata/Springtime/Springtime.ssc'
>>> with simfile.mutate(
... input_filename,
... backup_filename=f'{input_filename}.old',
...) as springtime:
... if springtime.subtitle.endswith('(edited)'):
... raise simfile.CancelMutation
... springtime.subtitle += '(edited)'

In this example, we specify the optional backup_filename parameter to preserve the simfile’s original contents. Al-
ternatively, we could have specified an output_filename to write the modified simfile somewhere other than the input
filename.

simfile.mutate() writes the simfile back to the disk only if it exits without an exception. Any exception that
reaches the context manager will propagate up, except for CancelMutation, which cancels the operation without
re-throwing.

If this workflow doesn’t suit your use case, you can serialize to a file object using the simfile’s serialize()method:

>>> import simfile
>>> springtime = simfile.open('testdata/Springtime/Springtime.ssc')
>>> springtime.subtitle = '(edited)'
>>> with open('testdata/Springtime (edit).ssc', 'w', encoding='utf-8') as outfile:
... springtime.serialize(outfile)

Finally, if your destination isn’t a file object, you can serialize the simfile to a string using str(simfile) and
proceed from there.

3.2.6 Robust parsing of arbitrary simfiles

The real world is messy, and many simfiles on the Internet are technically malformed despite appearing to function
correctly in StepMania. This library aims to be strict by default, both for input and output, but allow more permissive
input handling on an opt-in basis.

The functions exposed by the top-level simfile module accept a strict parameter that can be set to False to suppress
MSD parser errors:

>>> import simfile
>>> springtime = simfile.open('testdata/Springtime/Springtime.ssc', strict=False)

Warning: Due to the simplicity of the MSD format, there’s only one error condition at the data layer - stray text
between parameters - which setting strict to False suppresses. Almost any text file will successfully parse as a
“simfile” with this check disabled, so exercise caution when applying this feature to arbitrary files.

While most modern simfiles are encoded in UTF-8, many older simfiles use dated encodings (perhaps resembling
Latin-1 or Shift-JIS). This was a pain to handle correctly in older versions, but in version 2.0, all simfile
functions that interact with the filesystem detect an appropriate encoding automatically, so there’s typically no
need to specify an encoding or handle UnicodeDecodeError exceptions. Read through the documentation of
open_with_detected_encoding() for more details.

12 Chapter 3. Further reading

simfile, Release 2.1.1

When grouping notes using the group_notes() function, orphaned head or tail notes will raise an exception by
default. Refer to Handling holds, rolls, and jumps for more information on handling orphaned notes gracefully. (This
is more common than you might imagine - “Springtime”, which comes bunded with StepMania, has orphaned tail
notes in its first chart!)

3.3 Known properties

Known properties refer to properties of simfiles and their charts that the current stable version of StepMania actively
uses. These are the properties that simfile exposes as attributes on simfile and chart objects. They are also the only
properties that StepMania’s built-in editor will preserve when saving a simfile; unknown properties are liable to be
deleted if saved by the StepMania editor.

When working with known properties, you should prefer to use attributes (e.g. sim.title, chart.stepstype)
rather than indexing into the underlying dictionary (e.g. sim['TITLE'], chart['STEPSTYPE']). While these
are functionally equivalent in many cases, attributes generally behave closer to how StepMania interprets simfiles:

• If a property is missing from the simfile, accessing the attribute returns None instead of throwing a KeyError.
StepMania generally treats missing properties as if they had an empty or default value, so it’s nice to be able to
handle this case without having to catch exceptions everywhere.

• StepMania supports a few legacy aliases for properties, and attributes make use of these aliases when present.
For example, if a simfile contains a FREEZES property instead of the usual STOPS, sim.stops will use the
alias in the backing dictionary (both for reads and writes!), whereas sim['STOPS'] will throw a KeyError.
This lets you write cleaner code with fewer special cases for old simfiles.

• Attributes are implicitly spell-checked: misspelling a property like sim.artistranslit will consistently
raise an AttributeError, and may even be flagged by your IDE depending on its Python type-checking
capabilities. By contrast, reading from sim['ARTISTRANSLIT'] will generally raise the more vague
KeyError exception, and writing to such a field would create a new, unknown property in the simfile, which
is probably not what you wanted. Furthermore, your IDE would have no way to know the string property is
misspelled.

With that said, there are legitimate use cases for indexing. String keys are easier when you need to operate on multiple
properties generically, and they’re the only option for accessing “unknown properties” like numbered BGCHANGES
and properties only used by derivatives of StepMania. When dealing with property string keys, consider using the
.get method from the underlying dictionary to handle missing keys gracefully.

3.3.1 What are the known properties?

These are the known properties for simfiles:

String key Attribute SMSimfile SSCSimfile
TITLE title X X
SUBTITLE subtitle X X
ARTIST artist X X
TITLETRANSLIT titletranslit X X
SUBTITLETRANSLIT subtitletranslit X X
ARTISTTRANSLIT artisttranslit X X
GENRE genre X X
CREDIT credit X X
BANNER banner X X
BACKGROUND background X X

continues on next page

3.3. Known properties 13

simfile, Release 2.1.1

Table 1 – continued from previous page
String key Attribute SMSimfile SSCSimfile
LYRICSPATH lyricspath X X
CDTITLE cdtitle X X
MUSIC music X X
OFFSET offset X X
BPMS bpms X X
STOPS stops X X
FREEZES1 stops X
DELAYS delays X X
TIMESIGNATURES timesignatures X X
TICKCOUNTS tickcounts X X
INSTRUMENTTRACK instrumenttrack X X
SAMPLESTART samplestart X X
SAMPLELENGTH samplelength X X
DISPLAYBPM displaybpm X X
SELECTABLE selectable X X
BGCHANGES bgchanges X X
ANIMATIONS1 bgchanges X X
FGCHANGES fgchanges X X
KEYSOUNDS keysounds X X
ATTACKS attacks X X
VERSION version X
ORIGIN origin X
PREVIEWVID previewvid X
JACKET jacket X
CDIMAGE cdimage X
DISCIMAGE discimage X
PREVIEW preview X
MUSICLENGTH musiclength X
LASTSECONDHINT lastsecondhint X
WARPS warps X
LABELS labels X
COMBOS combos X
SPEEDS speeds X
SCROLLS scrolls X
FAKES fakes X

And these are the known properties for charts:

1 These keys are aliases supported by StepMania. The attribute will only use the alias if it’s present in the backing dictionary and the standard
name is not.

14 Chapter 3. Further reading

simfile, Release 2.1.1

String key Attribute SMChart SSCChart
STEPSTYPE stepstype X X
DESCRIPTION description X X
DIFFICULTY difficulty X X
METER meter X X
RADARVALUES radarvalues X X
NOTES notes X X
NOTES21 notes X
CHARTNAME chartname X
CHARTSTYLE chartstyle X
CREDIT credit X
MUSIC music X
BPMS bpms X
STOPS stops X
DELAYS delays X
TIMESIGNATURES timesignatures X
TICKCOUNTS tickcounts X
COMBOS combos X
WARPS warps X
SPEEDS speeds X
SCROLLS scrolls X
FAKES fakes X
LABELS labels X
ATTACKS attacks X
OFFSET offset X
DISPLAYBPM displaybpm X

Known properties supported by both the SM and SSC formats are documented in BaseSimfile and BaseChart.
These are exactly the known properties for SMSimfile and SMChart. The SSC format then adds additional known
properties on top of the base set.

Here is all of the relevant documentation:

class simfile.base.BaseSimfile(*, file: Optional[Union[TextIO, Iterator[str]]] = None, string:
Optional[str] = None, strict: bool = True)

A simfile, including its metadata (e.g. song title) and charts.

Metadata is stored directly on the simfile object through a dict-like interface. Keys are unique (if there are
duplicates, the last value wins) and converted to uppercase.

Additionally, properties recognized by the current stable version of StepMania are exposed through lower-case
properties on the object for easy (and implicitly spell-checked) access. The following known properties are
defined:

• Metadata: title, subtitle, artist, titletranslit, subtitletranslit, artisttranslit, genre, credit, samplestart, sam-
plelength, selectable, instrumenttrack, timesignatures

• File paths: banner, background, lyricspath, cdtitle, music

• Gameplay events: bgchanges, fgchanges, keysounds, attacks, tickcounts

• Timing data: offset, bpms, stops, delays

If a desired simfile property isn’t in this list, it can still be accessed as a dict item.

By default, the underlying parser will throw an exception if it finds any stray text between parameters. This
behavior can be overridden by setting strict to False in the constructor.

3.3. Known properties 15

simfile, Release 2.1.1

class simfile.base.BaseChart
One chart from a simfile.

All charts have the following known properties: stepstype, description, difficulty, meter, radarvalues, and notes.

class simfile.ssc.SSCSimfile(*, file: Optional[Union[TextIO, Iterator[str]]] = None, string: Op-
tional[str] = None, strict: bool = True)

SSC implementation of BaseSimfile.

Adds the following known properties:

• SSC version: version

• Metadata: origin, labels, musiclength, lastsecondhint

• File paths: previewvid, jacket, cdimage, discimage, preview

• Gameplay events: combos, speeds, scrolls, fakes

• Timing data: warps

class simfile.ssc.SSCChart
SSC implementation of BaseChart.

Unlike SMChart, SSC chart metadata is stored as key-value pairs, so this class allows full modification of its
backing OrderedDict.

Adds the following known properties:

• Metadata: chartname, chartstyle, credit, timesignatures

• File paths: music

• Gameplay events: tickcounts, combos, speeds, scrolls, fakes, attacks

• Timing data: bpms, stops, delays, warps, labels, offset, displaybpm

3.4 Timing & note data

For advanced use cases that require parsing specific fields from simfiles and charts, simfile provides subpackages that
interface with the core simfile & chart classes. As of version 2.0, the available subpackages are simfile.notes
and simfile.timing.

3.4.1 Reading note data

The primary function of a simfile is to store charts, and the primary function of a chart is to store note data – sequences
of inputs that the player must follow to the rhythm of the song. Notes come in different types, appear in different
columns, and occur on different beats of the chart.

Rather than trying to parse a chart’s notes field directly, use the NoteData class:

>>> import simfile
>>> from simfile.notes import NoteData
>>> from simfile.timing import Beat
>>> springtime = simfile.open('testdata/Springtime/Springtime.ssc')
>>> chart = springtime.charts[0]
>>> note_data = NoteData(chart)
>>> note_data.columns
4
>>> for note in note_data:

(continues on next page)

16 Chapter 3. Further reading

simfile, Release 2.1.1

(continued from previous page)

... if note.beat > Beat(18): break

... print(note)

...
Note(beat=Beat(16), column=2, note_type=NoteType.TAP)
Note(beat=Beat(16.5), column=2, note_type=NoteType.TAP)
Note(beat=Beat(16.75), column=0, note_type=NoteType.TAP)
Note(beat=Beat(17), column=1, note_type=NoteType.TAP)
Note(beat=Beat(17.5), column=0, note_type=NoteType.TAP)
Note(beat=Beat(17.75), column=2, note_type=NoteType.TAP)
Note(beat=Beat(18), column=1, note_type=NoteType.TAP)

There’s no limit to how many notes a chart can contain – some have tens or even hundreds of thousands! For this
reason, NoteData only generates Note objects when you ask for them, one at a time, rather than storing a list of
notes. Likewise, functions in this library that operate on note data accept an iterator of notes, holding them in memory
for as little time as possible.

3.4.2 Counting notes

Counting notes isn’t as straightforward as it sounds: there are different note types and different ways to handle notes
on the same beat. StepMania offers six different “counts” on the music selection screen by default, each offering a
unique aggregation of the gameplay events in the chart.

To reproduce StepMania’s built-in note counts, use the functions provided by the simfile.notes.countmodule:

>>> import simfile
>>> from simfile.notes import NoteData
>>> from simfile.notes.count import *
>>> springtime = simfile.open('testdata/Springtime/Springtime.ssc')
>>> chart = springtime.charts[0]
>>> note_data = NoteData(chart)
>>> count_steps(note_data)
864
>>> count_jumps(note_data)
33

If the functions in this module aren’t sufficient for your needs, move on to the next section for more options.

3.4.3 Handling holds, rolls, and jumps

Conceptually, hold and roll notes are atomic: while they have discrete start and end beats, both endpoints must be
specified for the note to be valid. This logic also extends to jumps in certain situations: for example, combo counters,
judgement & score algorithms, and note counting methods may consider jumps to be “equal” in some sense to isolated
tap notes.

In contrast, iterating over NoteData yields a separate “note” for every discrete event in the chart: hold and roll heads
are separate from their tails, and jumps are emitted one note at a time. You may want to group either or both of these
types of notes together, depending on your use case.

The group_notes() function handles all of these cases. In this example, we find that the longest hold in Spring-
time’s Lv. 21 chart is 6½ beats long:

>>> import simfile
>>> from simfile.notes import NoteType, NoteData
>>> from simfile.notes.group import OrphanedNotes, group_notes

(continues on next page)

3.4. Timing & note data 17

simfile, Release 2.1.1

(continued from previous page)

>>> springtime = simfile.open('testdata/Springtime/Springtime.ssc')
>>> chart = next(filter(lambda chart: chart.meter == '21', springtime.charts))
>>> note_data = NoteData(chart)
>>> group_iterator = group_notes(
... note_data,
... include_note_types={NoteType.HOLD_HEAD, NoteType.TAIL},
... join_heads_to_tails=True,
... orphaned_tail=OrphanedNotes.DROP_ORPHAN,
...)
>>> longest_hold = 0
>>> for grouped_notes in group_iterator:
... note = note_group[0]
... longest_hold = max(longest_hold, note.tail_beat - note.beat)
...
>>> longest_hold
Fraction(13, 2)

There’s a lot going on in this code snippet, so here’s a breakdown of the important parts:

>>> group_iterator = group_notes(
... note_data,
... include_note_types={NoteType.HOLD_HEAD, NoteType.TAIL},
... orphaned_tail=OrphanedNotes.DROP_ORPHAN,
... join_heads_to_tails=True,
...)

Here we choose to group hold heads to their tails, dropping any orphaned tails. By default, orphaned heads or tails will
raise an exception, but in this example we’ve opted out of including roll heads, whose tails would become orphaned.
If we chose to include NoteType.ROLL_HEAD in the set, then we could safely omit the orphaned_tail argument
since all tails should have a matching head (assuming the chart is valid).

>>> for grouped_notes in group_iterator:
... note = note_group[0]
... longest_hold = max(longest_hold, note.tail_beat - note.beat)

The group_notes() function yields lists of notes rather than single notes. In this example, every list will only have
a single element because we haven’t opted into joining notes that occur on the same beat (we would do so using the
same_beat_notes parameter). As such, we can extract the single note by indexing into each note group.

You’ll notice that we’re using a tail_beat attribute, which isn’t present in the Note class. That’s because
these notes are actually NoteWithTail instances: the lists of notes referenced above are actually lists of Note
and/or NoteWithTail objects, depending on the parameters. In this case, we know that every note will be a
NoteWithTail instance because we’ve only included head and tail note types, which will be joined together.

Out of all the possible combinations of group_notes() parameters, this example yields fairly simple items (sin-
gleton lists of NoteWithTail instances). Other combinations of parameters may yield variable-length lists where
you need to explicitly check the type of the elements.

18 Chapter 3. Further reading

simfile, Release 2.1.1

3.4.4 Changing & writing notes

As mentioned before, the simfile.notes API operates on iterators of notes to keep the memory footprint light.
Iterating over NoteData is one way to obtain a note iterator, but you can also generate Note objects yourself.

To serialize a stream of notes into note data, use the class method NoteData.from_notes():

>>> import simfile
>>> from simfile.notes import Note, NoteType, NoteData
>>> from simfile.timing import Beat
>>> cols = 4
>>> notes = [
... Note(beat=Beat(i, 2), column=i%cols, note_type=NoteType.TAP)
... for i in range(8)
...]
>>> note_data = NoteData.from_notes(notes, cols)
>>> print(str(note_data))
1000
0100
0010
0001
1000
0100
0010
0001

The notes variable above could use parentheses to define a generator instead of square brackets to define a list, but
you don’t have to stick to pure generators to interact with the simfile.notes API. Use whatever data structure
suits your use case, as long as you’re cognizant of potential out-of-memory conditions.

Warning: Note iterators passed to the simfile.notes API should always be sorted by their natural ordering,
the same order in which they appear in strings of note data (and the order you’ll get by iterating over NoteData).
If necessary, you can use Python’s built-in sorting mechanisms on Note objects to ensure they are in the right
order, like sorted(), list.sort(), and the bisect module.

To insert note data back into a chart, convert it to a string and assign it to the chart’s notes attribute. In this example,
we mirror the notes’ columns in Springtime’s first chart and update the simfile object:

>>> import simfile
>>> from simfile.notes import NoteData
>>> from simfile.notes.count import *
>>> springtime = simfile.open('testdata/Springtime/Springtime.ssc')
>>> chart = springtime.charts[0]
>>> note_data = NoteData(chart)
>>> cols = note_data.columns
>>> def mirror(note, cols):
... return Note(
... beat=note.beat,
... column=cols - note.column - 1,
... note_type=note.note_type,
...)
...
>>> mirrored_notes = (mirror(note, cols) for note in note_data)
>>> mirrored_note_data = NoteData.from_notes(mirrored_notes, cols)
>>> chart.notes = str(mirrored_note_data)

3.4. Timing & note data 19

simfile, Release 2.1.1

From there, we could write the modified simfile back to disk as described in Reading & writing simfiles.

3.4.5 Reading timing data

Rather than reading fields like BPMS and STOPS directly from the simfile, use the TimingData class:

>>> import simfile
>>> from simfile.timing import TimingData
>>> springtime = simfile.open('testdata/Springtime/Springtime.ssc')
>>> timing_data = TimingData(springtime)
>>> timing_data.bpms
BeatValues([BeatValue(beat=Beat(0), value=Decimal('181.685'))])

The SSC format introduces “split timing” – per-chart timing data – which TimingData empowers you to handle as
effortlessly as providing the chart:

>>> import simfile
>>> from simfile.timing import TimingData
>>> springtime = simfile.open('testdata/Springtime/Springtime.ssc')
>>> chart = springtime.charts[0]
>>> split_timing = TimingData(springtime, chart)
>>> split_timing.bpms
BeatValues([BeatValue(beat=Beat(0), value=Decimal('181.685')),
→˓BeatValue(beat=Beat(304), value=Decimal('90.843')), BeatValue(beat=Beat(311),
→˓value=Decimal('181.685'))])

This works regardless of whether the chart has split timing, or even whether the simfile is an SSC file; if the chart has
no timing data of its own, it will be ignored and the simfile’s timing data will be used instead.

3.4.6 Getting the displayed BPM

On StepMania’s music selection screen, players can typically see the selected chart’s BPM, whether static or a range
of values. For most charts, this is inferred through its timing data, but the DISPLAYBPM tag can be used to override
this value. Additionally, the special DISPLAYBPM value * obfuscates the BPM on the song selection screen, typically
with a flashing sequence of random numbers.

To get the displayed BPM, use the displaybpm() function:

>>> import simfile
>>> from simfile.timing.displaybpm import displaybpm
>>> springtime = simfile.open('testdata/Springtime/Springtime.ssc')
>>> disp = displaybpm(springtime)
>>> if disp.value:
... print(f"Static value: {disp.value}")
... elif disp.range:
... print(f"Range of values: {disp.value[0]}-{disp.value[1]}")
... else:
... print(f"* (obfuscated BPM)")
...
Static value: 182

The return value will be one of StaticDisplayBPM , RangeDisplayBPM , or RandomDisplayBPM . All of
these classes implement four properties (as of 2.1):

• StaticDisplayBPM.value returns the single BPM value; the other classes return None.

• RangeDisplayBPM.range returns a (min, max) tuple; the other classes return None.

20 Chapter 3. Further reading

simfile, Release 2.1.1

• min and max return the lowest and highest BPM values for both StaticDisplayBPM and
RangeDisplayBPM (they will be equal for the static case).

Here’s the same information in a table:

Actual BPM DISPLAYBPM value Class min max value range
300 StaticDisplayBPM 300 300 300 None
12-300 300 StaticDisplayBPM 300 300 300 None
12-300 RangeDisplayBPM 12 300 None (12, 300)
12-300 150:300 RangeDisplayBPM 150 300 None (150, 300)
12-300 * RandomDisplayBPM None None None None

Much like TimingData, displaybpm() accepts an optional chart parameter for SSC split timing.

Also, setting ignore_specified to True will ignore any DISPLAYBPM property and always return the true BPM range.
If you want to get the real BPM hidden by RandomDisplayBPM (while allowing numeric DISPLAYBPM values),
you can do something like this:

disp = displaybpm(sf)
if not disp.max: # RandomDisplayBPM case

disp = displaybpm(sf, ignore_specified=True)

Warning: It may be tempting to use max to calculate the scroll rate for MMod, but this will be incorrect in some
edge cases, most notably songs with very high BPMs and no DISPLAYBPM specified.

3.4.7 Converting song time to beats

If you wanted to implement a simfile editor or gameplay engine, you’d need some way to convert song time to beats
and vice-versa. To reach feature parity with StepMania, you’d need to implement BPM changes, stops, delays, and
warps in order for your application to support all the simfiles that StepMania accepts.

Consider using the TimingEngine for this use case:

>>> import simfile
>>> from simfile.timing import Beat, TimingData
>>> from simfile.timing.engine import TimingEngine
>>> springtime = simfile.open('testdata/Springtime/Springtime.ssc')
>>> timing_data = TimingData(springtime)
>>> engine = TimingEngine(timing_data)
>>> engine.time_at(Beat(32))
10.658
>>> engine.beat_at(10.658)
Beat(32)

This engine handles all of the timing events described above, including edge cases involving overlapping stops, delays,
and warps. You can even check whether a note near a warp segment would be hittable() or not!

3.4. Timing & note data 21

simfile, Release 2.1.1

3.4.8 Combining notes and time

Finally, to tie everything together, check out the time_notes() function which converts a Note stream into a
TimedNote stream:

>>> import simfile
>>> from simfile.timing import Beat, TimingData
>>> from simfile.notes import NoteData
>>> from simfile.notes.timed import time_notes
>>> springtime = simfile.open('testdata/Springtime/Springtime.ssc')
>>> chart = springtime.charts[0]
>>> note_data = NoteData(chart)
>>> timing_data = TimingData(springtime, chart)
>>> for timed_note in time_notes(note_data, timing_data):
... if 60 < timed_note.time < 61:
... print(timed_note)
...
TimedNote(time=60.029, note=Note(beat=Beat(181.5), column=3, note_type=NoteType.TAP))
TimedNote(time=60.194, note=Note(beat=Beat(182), column=0, note_type=NoteType.HOLD_
→˓HEAD))
TimedNote(time=60.524, note=Note(beat=Beat(183), column=3, note_type=NoteType.TAP))
TimedNote(time=60.855, note=Note(beat=Beat(184), column=2, note_type=NoteType.TAP))

You could use this to determine the notes per second (NPS) over the entire chart, or at a specific time like the example
above. Get creative!

3.5 Learn by example

This page includes examples of varying length demonstrating correct & type-checked simfile library usage. You’re
free to use these recipes & scripts as-is, modify them to suit your needs, or simply use them as a learning aid.

3.5.1 Recipes

This section includes short snippets of code that demonstrate basic library usage. These recipes are in the public
domain.

Get charts for one game mode

from typing import Iterator
from simfile.types import Chart

Imperative version
def charts_for_stepstype(charts, stepstype='dance-single') -> Iterator[Chart]:

for chart in charts:
if chart.stepstype == stepstype:

yield chart

One-liner version
def charts_for_stepstype(charts, stepstype='dance-single') -> Iterator[Chart]:

yield from filter(lambda chart: chart.stepstype == stepstype, charts)

22 Chapter 3. Further reading

simfile, Release 2.1.1

Get the hardest chart

from typing import Optional, Sequence
from simfile.types import Chart

Imperative version
def get_hardest_chart(charts) -> Optional[Chart]:

hardest_chart: Optional[Chart] = None
hardest_meter: Optional[int] = None

for chart in charts:
Remember to convert `meter` to an integer for comparisons
meter = int(chart.meter or "1")
if hardest_meter is None or meter > hardest_meter:

hardest_chart = chart
hardest_meter = meter

return hardest_chart

One-liner version
def get_hardest_chart(charts: Sequence[Chart]) -> Optional[Chart]:

return max(
charts,
key=lambda chart: int(chart.meter or "1"),
default=None,

)

Mirror a chart’s notes

from typing import Iterator
from simfile.types import Chart
from simfile.notes import Note, NoteData

def mirror_note(note: Note, columns: int) -> Note:
Make a new Note with all fields the same except for column
return note._replace(

You could replace this expression with anything you want
column=columns - note.column - 1

)

def mirror_notes(notedata: NoteData) -> Iterator[Note]:
columns = notedata.columns
for note in notedata:

yield mirror_note(note, columns)

def mirror_chart_in_place(chart: Chart) -> None:
notedata = NoteData(chart)
mirrored = NoteData.from_notes(

mirror_notes(notedata),
columns=notedata.columns,

)
Assign str(NoteData) to Chart.notes to update the chart's notes
chart.notes = str(mirrored)

3.5. Learn by example 23

simfile, Release 2.1.1

Remove all but one chart from a simfile

from typing import Optional
from simfile.types import Chart, Charts, Simfile

When you have multiple parameters of the same type (str in this case),
it's good practice to use a * pseudo-argument to require them to be named
def find_chart(charts: Charts, *, stepstype: str, difficulty: str) -> Optional[Chart]:

for chart in charts:
if chart.stepstype == stepstype and chart.difficulty == difficulty:

return chart

def remove_other_charts(sf: Simfile, *, stepstype='dance-single', difficulty=
→˓'Challenge'):

the_chart = find_chart(sf.charts, stepstype=stepstype, difficulty=difficulty)
if the_chart:

Replace the simfile's charts with a list of one
sf.charts = [the_chart] # type: ignore

else:
You could alternatively raise an exception, pick a different chart,
set sf.charts to an empty list, etc.
print(f"No {stepstype} {difficulty} chart found for {repr(sf)}")

3.5.2 Full scripts

This section includes complete, ready-to-use scripts that automate repetitive tasks on simfile packs. These scripts are
licensed under the MIT License, the same license as the simfile library itself.

change_sync_bias.py

R"""
Add or subtract the standard ITG sync bias (9 milliseconds)
to all of the sync offsets in a pack.

This script updates the offsets of both SM and SSC simfiles,
including any SSC charts with their own timing data.

If you actually intend to use this script in practice,
you may want to keep track of which packs you've already adjusted
using a text file in each pack directory or some other system.

Usage examples:

Convert a pack from "null sync" to "ITG sync"
python change_sync_bias.py +9 "C:\StepMania\Songs\My Pack"

Convert a pack from "ITG sync" to "null sync"
python change_sync_bias.py -9 "C:\StepMania\Songs\My Pack"

"""
import argparse
from decimal import Decimal
import sys
from typing import Union

(continues on next page)

24 Chapter 3. Further reading

simfile, Release 2.1.1

(continued from previous page)

import simfile
import simfile.dir

class ChangeSyncBiasArgs:
"""Stores the command-line arguments for this script."""

pack: str
itg_to_null: bool
null_to_itg: bool

def argparser():
"""Get an ArgumentParser instance for this command-line script."""
parser = argparse.ArgumentParser(prefix_chars="-+")
parser.add_argument("pack", type=str, help="path to the pack to modify")
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument(

"-9", "--itg-to-null", action="store_true", help="subtract 9ms from offsets"
)
group.add_argument(

"+9", "--null-to-itg", action="store_true", help="add 9ms to offsets"
)
return parser

def adjust_offset(
obj: Union[simfile.types.Simfile, simfile.ssc.SSCChart],
delta: Decimal,

):
"""Add the delta to the simfile or SSC chart's offset, if present."""
if obj.offset is not None:

obj.offset = str(Decimal(obj.offset) + delta)

def change_sync_bias(simfile_path: str, args: ChangeSyncBiasArgs):
"""
Add or subtract 9 milliseconds to the simfile's offset,
as well as any SSC charts with their own timing data.

This saves the updated simfile to its original location
and writes a backup copy with a ~ appended to the filename.
"""
Map the +9 or -9 arg to the actual offset delta.
#
We don't have to check both itg_to_null and null_to_itg
because the mutually exclusive & required argument group
ensures that exactly one of them will be True.
delta = Decimal("-0.009" if args.itg_to_null else "+0.009")

You could specify output_filename here to write the updated file elsewhere
with simfile.mutate(

input_filename=f"{simfile_path}",
backup_filename=f"{simfile_path}~",

) as sf:
print(f"Processing {simfile_path}")

(continues on next page)

3.5. Learn by example 25

simfile, Release 2.1.1

(continued from previous page)

Always adjust the simfile's offset
adjust_offset(sf, delta)

Additionally try to adjust SSC charts' offsets.
This won't do anything unless the chart has its own timing data.
if isinstance(sf, simfile.ssc.SSCSimfile):

for chart in sf.charts:
adjust_offset(chart, delta)

def main(argv):
Parse command-line arguments
args = argparser().parse_args(argv[1:], namespace=ChangeSyncBiasArgs())

Iterate over SimfileDirectory objects from the pack
so that we can easily get the .sm and/or .ssc paths
for simfile_dir in simfile.dir.SimfilePack(args.pack).simfile_dirs():

Try to update whichever formats exist
for simfile_path in [simfile_dir.sm_path, simfile_dir.ssc_path]:

if simfile_path:
change_sync_bias(simfile_path, args)

if __name__ == "__main__":
main(sys.argv)

sort_by_difficulty.py

R"""
Change the title of every simfile in a pack
so that they are sorted by difficulty in StepMania.

This script finds the hardest chart of a given stepstype (dance-single by default)
and puts its meter (difficulty number) between brackets at the start of the title
and titletranslit.

Usage examples:

Sort a pack by difficulty
python sort_by_difficulty.py "C:\StepMania\Songs\My Pack"

Unsort by difficulty (remove the title prefixes)
python sort_by_difficulty.py -r "C:\StepMania\Songs\My Pack"

Customize stepstype and digits
python sort_by_difficulty.py -s dance-double -d 3 "C:\StepMania\My Pack"

"""
import argparse
import sys
from typing import Optional, Sequence

import simfile
import simfile.dir

(continues on next page)

26 Chapter 3. Further reading

simfile, Release 2.1.1

(continued from previous page)

class SortByDifficultyArgs:
"""Stores the command-line arguments for this script."""

pack: str
stepstype: str
digits: int
remove: bool

def argparser():
"""Get an ArgumentParser instance for this command-line script."""
parser = argparse.ArgumentParser()
parser.add_argument("pack", type=str, help="path to the pack to modify")
parser.add_argument("-s", "--stepstype", type=str, default="dance-single")
parser.add_argument(

"-d",
"--digits",
type=int,
default=2,
help="minimum digits (will add leading zeroes)",

)
parser.add_argument(

"-r",
"--remove",
action=argparse.BooleanOptionalAction,
help="remove meter prefix",

)
return parser

def hardest_chart(
charts: Sequence[simfile.types.Chart], stepstype: str

) -> Optional[simfile.types.Chart]:
"""
Find & return the hardest chart (numerically) of a given stepstype.

Returns None if there are no charts matching the stepstype.
"""
return max(

[c for c in charts if c.stepstype == stepstype],
key=lambda c: int(c.meter or "1"),
default=None,

)

def prefix_title_with_meter(simfile_path: str, args: SortByDifficultyArgs):
"""
Add (or remove) a numeric prefix to the simfile's title and titletranslit.

This saves the updated simfile to its original location
and writes a backup copy with a ~ appended to the filename.
"""
You could specify output_filename here to write the updated file elsewhere
with simfile.mutate(

input_filename=f"{simfile_path}",
backup_filename=f"{simfile_path}~",

(continues on next page)

3.5. Learn by example 27

simfile, Release 2.1.1

(continued from previous page)

) as sf:
print(f"Processing {simfile_path}")

It's very unlikely for the title property to be blank or missing.
This is mostly to satisfy type-checkers.
current_title = sf.title or ""
current_titletranslit = sf.titletranslit or ""

if args.remove:
def remove_starting_brackets(current_text: str) -> str:

"""
If current_text has a bracketed number at the start of the text,

→˓remove it and return it
Otherwise, return current_text unchanged.
"""
Look for a number in brackets at the start of the text
if current_text.startswith("["):

open_bracket_index = current_text.find("[")
close_bracket_index = current_text.find("]")
bracketed_text = current_text[

open_bracket_index + 1 : close_bracket_index
]
if bracketed_text.isnumeric():

Remove the bracketed number from the text
return current_title[close_bracket_index + 1 :].lstrip(" ")

return current_title
sf.title = remove_starting_brackets(sf.title)
sf.titletranslit = remove_starting_brackets(sf.titletranslit)

else:
Find the hardest chart (numerically) within a stepstype
and use it to prefix the title
chart = hardest_chart(sf.charts, args.stepstype)

Skip this simfile if there were no charts for the stepstype.
Nothing will be written to disk in this case.
if not chart:

raise simfile.CancelMutation

It's very unlikely for the meter property to be blank or missing.
This is mostly to satisfy type-checkers.
meter = chart.meter or "1"

Put the meter at the start of the title,
filling in leading zeros per arguments
sf.title = f"[{meter.zfill(args.digits)}] {current_title}"
sf.titletranslit = f"[{meter.zfill(args.digits)}] {current_titletranslit}"

def main(argv):
Parse command-line arguments
args = argparser().parse_args(argv[1:], namespace=SortByDifficultyArgs())

Iterate over SimfileDirectory objects from the pack
so that we can easily get the .sm and/or .ssc paths
for simfile_dir in simfile.dir.SimfilePack(args.pack).simfile_dirs():

Try to update whichever formats exist
(continues on next page)

28 Chapter 3. Further reading

simfile, Release 2.1.1

(continued from previous page)

for simfile_path in [simfile_dir.sm_path, simfile_dir.ssc_path]:
if simfile_path:

prefix_title_with_meter(simfile_path, args)

if __name__ == "__main__":
main(sys.argv)

3.6 Changelog

3.6.1 2.1.1

Bugfixes

Two bugs in simfile 2.1.0’s SSC implementation broke multi-value properties, causing them to be truncated or mangled
past the first value. This release fixes these issues:

1. When opening an SSC file, the DISPLAYBPM and ATTACKS properties of both simfiles and charts no longer
stop parsing at the first :. For DISPLAYBPM, this meant a BPM range of 120:240would have been incorrectly
parsed as a static BPM of 120. ATTACKS were completely broken as they use colon as a separator.

2. The aforementioned properties are now correctly serialized from SSCChart; previously, they would have been
escaped with backslashes. This bug had the same effects described above, but only affected manual assignment
of multi-value properties (e.g. chart.displaybpm = "120:240") since the first bug shadowed this bug
during deserialization.

3.6.2 2.1.0

New features

• The new simfile.dir module offers SimfileDirectory and SimfilePack classes for nagivating
simfile filesystem structures.

• The new simfile.assets module provides an Assets class that can reliably discover paths to simfile
assets, even if they’re not specified in the simfile.

• The top-level simfile module now offers opendir() and openpack() functions as simplified interfaces
to the simfile.dir API.

• PyFilesystem2 has been integrated throughout this library’s filesystem interactions, enabling OS and non-OS
filesystems to be traversed using the same code. All functions, methods, and constructors that lead to filesystem
interactions now have an optional filesystem parameter for specifying a PyFS filesystem object. When omitted,
the filesystem defaults to the native OS filesystem as before.

• The DisplayBPM classes now all expose the same four properties; the ones that don’t apply to a particular class
return None. This enables you to handle all three cases without having to import the types for isinstance
checks. Refer to Getting the displayed BPM for more details.

3.6. Changelog 29

https://docs.pyfilesystem.org/en/latest/index.html

simfile, Release 2.1.1

Bugfixes

• The charts property on simfiles is now writable, meaning the list of charts can be overwritten directly (not
just added to / removed from).

• Backslash escape sequences and multi-value MSD parameters are now handled correctly, both when opening
and serializing simfiles. See the Enhancements section below for more details.

• sm_to_ssc() no longer produces invalid output when there are negative BPMs or stops in the timing data. (It
throws NotImplementedError as a temporary stopgap. In the future, negative timing data will be converted
to warps, as StepMania does automatically.)

• Various type annotations have been improved throughout the library. In particular, Iterator input arguments
have been replaced with Iterable so that you don’t need to wrap them in iter(...) to suppress type
errors from static analyzers.

Enhancements

• The dependency on msdparser has been upgraded to version 2. This corrects parsing of escape sequences
and multi-value parameters, meaning that : and \ characters inside a value are handled the same way as in
StepMania. Additionally, parsing is now up to 10 times faster than before!

3.6.3 2.0.1

Bugfix: The dependency on msdparser 1.0.0 was mis-specified in both the Pipfile and setup.py. Publishing msdparser
2.0.0-beta.3 (a breaking release) caused fresh installs to be broken. This patch fixes the version specification in both
files.

3.6.4 2.0.0

Initial stable release of version 2. Refer to Migrating from simfile 1.0 to 2.0 for a general overview of the changes
since version 1.

3.7 Migrating from simfile 1.0 to 2.0

Version 1.0 of the simfile library was released in 2013. It only supported SM files and was primarily developed for
Python 2, with support for Python 3 on a separate branch.

Version 2.0 is a near-complete rewrite of the library exclusively for Python 3, with SSC support as the flagship feature.
Aside from new features, the design of the library has changed significantly to bring it in line with similar modern
Python libraries.

30 Chapter 3. Further reading

https://msdparser.readthedocs.io/en/latest/

simfile, Release 2.1.1

3.7.1 Simfile & chart classes

In 1.0, the simfile & chart classes were simfile.Simfile and simfile.Chart.

In 2.0, the simfile & chart classes are split by simfile type:

• For SM files, the simfile.sm module provides SMSimfile and SMChart.

• For SSC files, the simfile.ssc module provides SSCSimfile and SSCChart.

Additionally, simfile.types provides the union types Simfile and Chart, which are used to annotate param-
eters & return types where either implementation is acceptable.

3.7.2 Reading simfiles

In 1.0, the Simfile constructor accepted a filename or file object, and a .from_string class method handled
loading from string data:

>>> from simfile import Simfile # 1.0
>>> from_filename = Simfile('testdata/nekonabe/nekonabe.sm')
>>> # or...
>>> with open('testdata/nekonabe/nekonabe.sm', 'r') as infile:
... from_file_obj = Simfile(infile)
...
>>> # or...
>>> from_string = Simfile.from_string(str(from_file_obj))

In 2.0, each of these options has a corresponding function in the top-level simfile module:

>>> import simfile # 2.0
>>> from_filename = simfile.open('testdata/nekonabe/nekonabe.sm')
>>> # or...
>>> with open('testdata/nekonabe/nekonabe.sm', 'r') as infile:
... from_file_obj = simfile.load(infile)
...
>>> # or...
>>> from_string = simfile.loads(str(from_file_obj))

These methods determine which simfile format to use automatically, but you can alternatively instantiate the simfile
classes directly. They take a named file or string argument:

>>> from simfile.sm import SMSimfile # 2.0
>>> with open('testdata/nekonabe/nekonabe.sm', 'r') as infile:
... from_file_obj = SMSimfile(file=infile)
...
>>> # or...
>>> from_string = SMSimfile(string=str(from_file_obj))

3.7. Migrating from simfile 1.0 to 2.0 31

simfile, Release 2.1.1

3.7.3 Writing simfiles

In 1.0, simfile objects had a .save method that took a maybe-optional filename parameter:

>>> from simfile import Simfile # 1.0
>>> from_filename = Simfile('testdata/nekonabe/nekonabe.sm') # filename
→˓supplied
>>> from_filename.save() # no problem!
>>> from_string = Simfile.from_string(str(from_filename)) # no filename supplied
>>> try:
... from_string.save() # to where?
... except ValueError:
... from_string.save('testdata/nekonabe/nekonabe.sm') # much better

In 2.0, simfile objects no longer know their own filenames. Either pass a file object to the simfile’s serialize()
method or use simfile.mutate() for a more guided workflow.

3.7.4 Finding charts

In 1.0, the list of charts at Simfile.charts offered convenience methods for getting a single chart or finding
multiple charts:

>>> from simfile import Simfile # 1.0
>>> sm = Simfile('testdata/nekonabe/nekonabe.sm')
>>> single_novice = sm.charts.get(difficulty='Beginner')
>>> single_novice.stepstype
dance-single
>>> expert_charts = sm.charts.filter(difficulty='Challenge')
>>> [ex.stepstype for ex in expert_charts]
['dance-double', 'dance-single']

In 2.0, these convenience methods have been removed in favor of for-loops and the built-in filter function. Writing
your own predicates as Python code is much more flexibile than the 1.0 convenience methods, which could only find
charts by exact property matches.

3.7.5 Special property types

In 1.0, certain properties of simfiles and charts were automatically converted from strings to richer representations.

• The “BPMS” and “STOPS” simfile parameters were converted to Timing objects that offered convenient
access to the beat & value pairs:

>>> from simfile import Simfile # 1.0
>>> sm = Simfile('testdata/nekonabe/nekonabe.sm')
>>> print(type(sm['BPMS']))
<class 'simfile.simfile.Timing'>
>>> print(type(sm['STOPS']))
<class 'simfile.simfile.Timing'>

• The “meter” and “notes” chart attributes were converted to an integer and a Notes object, respectively:

>>> from simfile import Simfile # 1.0
>>> sm = Simfile('testdata/nekonabe/nekonabe.sm')
>>> chart = sm.charts[0]
>>> print(type(chart.meter))

(continues on next page)

32 Chapter 3. Further reading

simfile, Release 2.1.1

(continued from previous page)

<class 'int'>
>>> print(type(chart.notes))
<class 'simfile.simfile.Notes'>

In 2.0, all properties of simfiles and charts are kept as strings. This prevents wasting CPU cycles for use cases that don’t
benefit from the richer representations, keeps the underlying data structures homogeneously typed, and significantly
reduces the number of reasons why parsing a simfile might fail.

If you need rich timing data, use the simfile.timing package:

>>> import simfile # 2.0
>>> from simfile.timing import TimingData
>>> nekonabe = simfile.open('testdata/nekonabe/nekonabe.sm')
>>> timing_data = TimingData(nekonabe)
>>> print(timing_data.bpms[0])
BeatValue(beat=Beat(0), value=Decimal('150.000'))

If you need rich note data, use the simfile.notes package:

>>> import simfile # 2.0
>>> from simfile.notes import NoteData
>>> from simfile.timing import Beat
>>> nekonabe = simfile.open('testdata/nekonabe/nekonabe.sm')
>>> for note in NoteData(nekonabe.charts[0]):
... if note.beat > Beat(18): break
... print(note)
...
Note(beat=Beat(16.25), column=3, note_type=NoteType.TAP)
Note(beat=Beat(16.5), column=2, note_type=NoteType.TAP)
Note(beat=Beat(17.25), column=2, note_type=NoteType.TAP)
Note(beat=Beat(17.5), column=3, note_type=NoteType.TAP)

Keeping these modules separate from the core simfile & chart classes enables them to be much more fully-featured
than their 1.0 counterparts.

3.8 API Reference

This page contains auto-generated API reference documentation1.

3.8.1 simfile

Convenience functions for loading & modifying simfiles.

All functions take a strict parameter that defaults to True. By default, the underlying parser will throw an exception if
it finds any stray text between parameters. This behavior can be overridden by setting strict to False.

1 Created with sphinx-autoapi

3.8. API Reference 33

https://github.com/readthedocs/sphinx-autoapi

simfile, Release 2.1.1

Subpackages

simfile.notes

Note data classes, plus submodules that operate on note data.

Submodules

simfile.notes.count

Module Contents

Functions

count_grouped_notes(grouped_notes_iterator:
Iterable[simfile.notes.group.GroupedNotes],
same_beat_minimum: int = 1) → int

Count a stream of GroupedNotes.

count_steps(notes: Iter-
able[simfile.notes.Note], *, include_note_types:
FrozenSet[simfile.notes.NoteType] = DE-
FAULT_NOTE_TYPES, same_beat_notes: sim-
file.notes.group.SameBeatNotes = SameBeat-
Notes.JOIN_ALL, same_beat_minimum: int = 1)
→ int

Count the steps in a note stream.

count_jumps(notes: Iter-
able[simfile.notes.Note], *, include_note_types:
FrozenSet[simfile.notes.NoteType] = DE-
FAULT_NOTE_TYPES, same_beat_notes: sim-
file.notes.group.SameBeatNotes = SameBeat-
Notes.JOIN_ALL) → int

Count the jumps (2+ simultaneous notes) in a note
stream.

count_mines(notes: Iterable[simfile.notes.Note]) →
int

Count the mines in a note stream.

count_hands(notes: Iter-
able[simfile.notes.Note], *, include_note_types:
FrozenSet[simfile.notes.NoteType] = DE-
FAULT_NOTE_TYPES, same_beat_notes: sim-
file.notes.group.SameBeatNotes = SameBeat-
Notes.JOIN_ALL, same_beat_minimum: int = 3)
→ int

Count the hands (3+ simultaneous notes) in a note
stream.

count_holds(notes: Iterable[simfile.notes.Note], *,
orphaned_head: simfile.notes.group.OrphanedNotes =
OrphanedNotes.RAISE_EXCEPTION, orphaned_tail:
simfile.notes.group.OrphanedNotes = Orphaned-
Notes.RAISE_EXCEPTION) → int

Count the hold notes in a note stream.

count_rolls(notes: Iterable[simfile.notes.Note], *,
orphaned_head: simfile.notes.group.OrphanedNotes =
OrphanedNotes.RAISE_EXCEPTION, orphaned_tail:
simfile.notes.group.OrphanedNotes = Orphaned-
Notes.RAISE_EXCEPTION) → int

Count the roll notes in a note stream.

34 Chapter 3. Further reading

simfile, Release 2.1.1

simfile.notes.count.count_grouped_notes(grouped_notes_iterator: Iter-
able[simfile.notes.group.GroupedNotes],
same_beat_minimum: int = 1)→ int

Count a stream of GroupedNotes.

To count only groups of N or more notes, use same_beat_minimum.

simfile.notes.count.count_steps(notes: Iterable[simfile.notes.Note], *, in-
clude_note_types: FrozenSet[simfile.notes.NoteType]
= DEFAULT_NOTE_TYPES, same_beat_notes: sim-
file.notes.group.SameBeatNotes = SameBeatNotes.JOIN_ALL,
same_beat_minimum: int = 1)→ int

Count the steps in a note stream.

The definition of “step count” varies by application; the default configuration tries to match StepMania’s defini-
tion as closely as possible:

• Taps, holds, rolls, and lifts are eligible for counting.

• Multiple inputs on the same beat are only counted once.

These defaults can be changed using the keyword parameters. Refer to SameBeatNotes for alternative ways
to count same-beat notes.

simfile.notes.count.count_jumps(notes: Iterable[simfile.notes.Note], *, in-
clude_note_types: FrozenSet[simfile.notes.NoteType]
= DEFAULT_NOTE_TYPES, same_beat_notes:
simfile.notes.group.SameBeatNotes = SameBeat-
Notes.JOIN_ALL)→ int

Count the jumps (2+ simultaneous notes) in a note stream.

This implementation defers to count_steps() with the same default parameters, except only groups of 2 or
more notes are counted (i.e. same_beat_minimum is set to 2).

simfile.notes.count.count_mines(notes: Iterable[simfile.notes.Note])→ int
Count the mines in a note stream.

simfile.notes.count.count_hands(notes: Iterable[simfile.notes.Note], *, in-
clude_note_types: FrozenSet[simfile.notes.NoteType]
= DEFAULT_NOTE_TYPES, same_beat_notes: sim-
file.notes.group.SameBeatNotes = SameBeatNotes.JOIN_ALL,
same_beat_minimum: int = 3)→ int

Count the hands (3+ simultaneous notes) in a note stream.

This implementation defers to count_steps() with the same default parameters, except only groups of 3 or
more notes are counted (i.e. same_beat_minimum is set to 3).

simfile.notes.count.count_holds(notes: Iterable[simfile.notes.Note], *, orphaned_head:
simfile.notes.group.OrphanedNotes = Orphaned-
Notes.RAISE_EXCEPTION, orphaned_tail: sim-
file.notes.group.OrphanedNotes = Orphaned-
Notes.RAISE_EXCEPTION)→ int

Count the hold notes in a note stream.

By default, this method validates that hold heads connect to their corresponding tails. This validation can be
turned off by setting the orphaned_head and orphaned_tail arguments to KEEP_ORPHAN or DROP_ORPHAN;
see OrphanedNotes for more details.

3.8. API Reference 35

simfile, Release 2.1.1

simfile.notes.count.count_rolls(notes: Iterable[simfile.notes.Note], *, orphaned_head:
simfile.notes.group.OrphanedNotes = Orphaned-
Notes.RAISE_EXCEPTION, orphaned_tail: sim-
file.notes.group.OrphanedNotes = Orphaned-
Notes.RAISE_EXCEPTION)→ int

Count the roll notes in a note stream.

By default, this method validates that roll heads connect to their corresponding tails. This validation can be
turned off by setting the orphaned_head and orphaned_tail arguments to KEEP_ORPHAN or DROP_ORPHAN;
see OrphanedNotes for more details.

simfile.notes.group

Module Contents

Classes

NoteWithTail A hold/roll head note with its corresponding tail note.
SameBeatNotes Choices for group_notes()’ same_beat_notes pa-

rameter.
OrphanedNotes Choices for group_notes()’ orphaned_head|tail

parameters.

Functions

group_notes(notes: Iter-
able[simfile.notes.Note], *, include_note_types:
FrozenSet[simfile.notes.NoteType] =
frozenset(NoteType), same_beat_notes: Same-
BeatNotes = SameBeatNotes.KEEP_SEPARATE,
join_heads_to_tails: bool = False, or-
phaned_head: OrphanedNotes = Orphaned-
Notes.RAISE_EXCEPTION, orphaned_tail: Or-
phanedNotes = OrphanedNotes.RAISE_EXCEPTION)
→ Iterator[GroupedNotes]

Group notes that are often considered linked to one an-
other.

ungroup_notes(grouped_notes: Iter-
able[GroupedNotes], *, orphaned_notes: Orphaned-
Notes = OrphanedNotes.RAISE_EXCEPTION) →
Iterator[simfile.notes.Note]

Convert grouped notes back into a plain note stream.

36 Chapter 3. Further reading

simfile, Release 2.1.1

Attributes

GroupedNotes A sequence of Note and possibly NoteWithTail
objects.

class simfile.notes.group.NoteWithTail
Bases: NamedTuple

A hold/roll head note with its corresponding tail note.

beat :simfile.timing.Beat

column :int

note_type :simfile.notes.NoteType

tail_beat :simfile.timing.Beat

player :int = 0
Only used in routine charts. The second player’s note data will have this value set to 1.

keysound_index :Optional[int]
Only used in keysounded SSC charts. Notes followed by a number in square brackets will have this value
set to the bracketed number.

simfile.notes.group.GroupedNotes
A sequence of Note and possibly NoteWithTail objects.

class simfile.notes.group.SameBeatNotes
Bases: enum.Enum

Choices for group_notes()’ same_beat_notes parameter.

When multiple notes land on the same beat. . .

• KEEP_SEPARATE: each note is emitted separately

• JOIN_BY_NOTE_TYPE: notes of the same type are emitted together

• JOIN_ALL: all notes are emitted together

KEEP_SEPARATE = 1

JOIN_BY_NOTE_TYPE = 2

JOIN_ALL = 3

exception simfile.notes.group.OrphanedNoteException
Bases: Exception

Raised by group_notes() to flag an orphaned head or tail note.

class simfile.notes.group.OrphanedNotes
Bases: enum.Enum

Choices for group_notes()’ orphaned_head|tail parameters.

When join_heads_to_tails is True and a head or tail note is missing its counterpart. . .

• RAISE_EXCEPTION: raise OrphanedNoteException

• KEEP_ORPHAN: emit the orphaned Note

• DROP_ORPHAN: do not emit the orphaned note

3.8. API Reference 37

simfile, Release 2.1.1

RAISE_EXCEPTION = 1

KEEP_ORPHAN = 2

DROP_ORPHAN = 3

simfile.notes.group.group_notes(notes: Iterable[simfile.notes.Note], *, include_note_types:
FrozenSet[simfile.notes.NoteType] = frozenset(NoteType),
same_beat_notes: SameBeatNotes = SameBeat-
Notes.KEEP_SEPARATE, join_heads_to_tails: bool =
False, orphaned_head: OrphanedNotes = Orphaned-
Notes.RAISE_EXCEPTION, orphaned_tail: Orphaned-
Notes = OrphanedNotes.RAISE_EXCEPTION) → Itera-
tor[GroupedNotes]

Group notes that are often considered linked to one another.

There are two kinds of connected notes: notes that occur on the same beat (“jumps”) and hold/roll notes with
their corresponding tails. Either or both of these connection types can be opted into using the constructor
parameters.

Generators produced by this class yield GroupedNotes objects, rather than Note objects. These are se-
quences that generally contain Note and NoteWithTail objects, although the output may be more restrained
depending on the configuration.

When join_heads_to_tails is set to True, tail notes are attached to their corresponding hold/roll heads as
NoteWithTail objects. The tail itself will not be emitted as a separate note. If a head or tail note is missing
its counterpart, orphaned_head and orphaned_tail determine the behavior. (These parameters are ignored if
join_heads_to_tails is omitted or False.)

Refer to each enum’s documentation for the other configuration options.

simfile.notes.group.ungroup_notes(grouped_notes: Iterable[GroupedNotes], *, or-
phaned_notes: OrphanedNotes = Orphaned-
Notes.RAISE_EXCEPTION)→ Iterator[simfile.notes.Note]

Convert grouped notes back into a plain note stream.

If a note falls within a NoteWithTail’s head and tail (on the same column), it would cause the head and tail
to be orphaned. orphaned_notes determines how to handle the splitting note: KEEP_ORPHAN will yield the
note (allowing the head and tail notes to become orphans) and DROP_ORPHAN will drop the note (preserving
the link between the head and tail notes).

Note that this check only applies to heads and tails joined as a NoteAndTail. If group_notes() was
called without specifying join_heads_to_tails, specifying orphaned_notes here will have no effect. This mirrors
how group_notes()’ orphaned_head and orphaned_tail parameters behave.

simfile.notes.timed

Module Contents

Classes

TimedNote A note with its song time attached.
UnhittableNotes How to handle timed notes that are unhittable due to

warp segments.

38 Chapter 3. Further reading

simfile, Release 2.1.1

Functions

time_notes(note_data: simfile.notes.NoteData, tim-
ing_data: simfile.timing.TimingData, unhittable_notes:
UnhittableNotes = UnhittableNotes.TAP_TO_FAKE)
→ Iterator[TimedNote]

Generate a stream of timed notes from the supplied note
& timing data.

class simfile.notes.timed.TimedNote
Bases: NamedTuple

A note with its song time attached.

time :simfile.timing.engine.SongTime

note :simfile.notes.Note

class simfile.notes.timed.UnhittableNotes
Bases: enum.Enum

How to handle timed notes that are unhittable due to warp segments.

When a note is unhittable. . .

• TAP_TO_FAKE: convert tap notes to fakes, drop other note types

• DROP_NOTE: drop the unhittable note regardless of type

• KEEP_NOTE: keep the unhittable note

TAP_TO_FAKE = 1

DROP_NOTE = 2

KEEP_NOTE = 3

simfile.notes.timed.time_notes(note_data: simfile.notes.NoteData, timing_data: sim-
file.timing.TimingData, unhittable_notes: UnhittableNotes
= UnhittableNotes.TAP_TO_FAKE)→ Iterator[TimedNote]

Generate a stream of timed notes from the supplied note & timing data.

For notes that are unhittable due to warps, the unhittable_notes parameter determines the behavior. See
UnhittableNotes for more details.

Package Contents

Classes

NoteType Known note types supported by StepMania.
Note A note, corresponding to a nonzero character in a chart’s

note data.
NoteData Wrapper for note data with iteration & serialization ca-

pabilities.

class simfile.notes.NoteType
Bases: enum.Enum

Known note types supported by StepMania.

3.8. API Reference 39

simfile, Release 2.1.1

TAP = 1

HOLD_HEAD = 2

TAIL = 3

ROLL_HEAD = 4

ATTACK = A

FAKE = F

KEYSOUND = K

LIFT = L

MINE = M

class simfile.notes.Note
Bases: NamedTuple

A note, corresponding to a nonzero character in a chart’s note data.

Note objects are intrinsically ordered according to their position in the underlying note data: that is, if note1
would appear earlier in the note data string than note2, then note1 < note2 is true.

beat :simfile.timing.Beat

column :int

note_type :NoteType

player :int = 0
Only used in routine charts. The second player’s note data will have this value set to 1.

keysound_index :Optional[int]
Only used in keysounded SSC charts. Notes followed by a number in square brackets will have this value
set to the bracketed number.

class simfile.notes.NoteData(source: Union[str, simfile.types.Chart, NoteData])
Wrapper for note data with iteration & serialization capabilities.

The constructor accepts a string of note data, any Chart, or another NoteData instance.

property columns(self)
How many note columns this chart has.

classmethod from_notes(cls: Type[NoteData], notes: Iterable[Note], columns: int) → Note-
Data

Convert a stream of notes into note data.

This method assumes the following preconditions:

• The input notes are naturally sorted.

• Every note’s beat is nonnegative.

• Every note’s column is nonnegative and less than columns.

Note that this method doesn’t quantize beats to 192nd ticks, and off-grid notes may result in measures
with more rows than the StepMania editor would produce. StepMania will quantize these notes gracefully
during gameplay, but you can apply Beat.round_to_tick() to each note’s beat if you’d prefer to
keep the note data tidy.

40 Chapter 3. Further reading

simfile, Release 2.1.1

simfile.timing

Timing data classes, plus submodules that operate on timing data.

Submodules

simfile.timing.displaybpm

Function & cla

Module Contents

Classes

StaticDisplayBPM A single BPM value.
RangeDisplayBPM A range of BPM values.
RandomDisplayBPM Used by StepMania to obfuscate the displayed BPM

with random numbers.

Functions

displaybpm(simfile: simfile.types.Simfile,
ssc_chart: simfile.ssc.SSCChart = SSCChart(),
ignore_specified: Optional[bool] = False) → Dis-
playBPM

Get the display BPM from a simfile and optionally an
SSC chart.

Attributes

DisplayBPM Type union of StaticDisplayBPM ,
RangeDisplayBPM , and RandomDisplayBPM .

class simfile.timing.displaybpm.StaticDisplayBPM
Bases: NamedTuple

A single BPM value.

value :decimal.Decimal
The single BPM value. This property is None in the other DisplayBPM classes.

property min(self)→ decimal.Decimal
Returns the single BPM value.

property max(self)→ decimal.Decimal
Returns the single BPM value.

property range(self)→ None

class simfile.timing.displaybpm.RangeDisplayBPM
Bases: NamedTuple

3.8. API Reference 41

simfile, Release 2.1.1

A range of BPM values.

min :decimal.Decimal

max :decimal.Decimal

property value(self)→ None

property range(self)→ Tuple[decimal.Decimal, decimal.Decimal]
(min, max) tuple. This property is None in the other DisplayBPM classes.

class simfile.timing.displaybpm.RandomDisplayBPM
Bases: NamedTuple

Used by StepMania to obfuscate the displayed BPM with random numbers.

property value(self)→ None

property min(self)→ None

property max(self)→ None

property range(self)→ None

simfile.timing.displaybpm.DisplayBPM
Type union of StaticDisplayBPM , RangeDisplayBPM , and RandomDisplayBPM .

simfile.timing.displaybpm.displaybpm(simfile: simfile.types.Simfile, ssc_chart: sim-
file.ssc.SSCChart = SSCChart(), ignore_specified:
Optional[bool] = False)→ DisplayBPM

Get the display BPM from a simfile and optionally an SSC chart.

If a DISPLAYBPM property is present (and ignore_specified isn’t set to True), its value is used as follows:

• One number maps to StaticDisplayBPM

• Two “:”-separated numbers maps to RangeDisplayBPM

• A literal “*” maps to RandomDisplayBPM

Otherwise, the BPMS property will be used. A single BPM maps to StaticDisplayBPM ; if there are
multiple, the minimum and maximum will be identified and passed to RangeDisplayBPM .

If both an SSCSimfile (version 0.7 or higher) and an SSCChart are provided, and if the chart contains any
timing fields, the chart will be used as the source of timing.

simfile.timing.engine

Module Contents

Classes

SongTime A floating-point time value, denoting a temporal posi-
tion in a simfile.

EventTag Types of timing events.
TimingEngine Convert song time to beats and vice-versa.

class simfile.timing.engine.SongTime
Bases: float

A floating-point time value, denoting a temporal position in a simfile.

42 Chapter 3. Further reading

simfile, Release 2.1.1

class simfile.timing.engine.EventTag
Bases: enum.IntEnum

Types of timing events.

The order of these values determines how multiple events on the same beat will be sorted: for example, delays
must occur before stops in order to correctly time notes on a beat with both a delay and a stop.

Warps, delays, and stops have a corresponding “end” type that TimingEngine uses to simplify the beat/time
conversion logic. These can be used to disambiguate the time at a given beat (for stops & delays) or the beat at
a given time (for warps).

WARP = 0

WARP_END = 1

BPM = 2

DELAY = 3

DELAY_END = 4

STOP = 5

STOP_END = 6

class simfile.timing.engine.TimingEngine(timing_data: simfile.timing.TimingData)
Convert song time to beats and vice-versa.

Under the hood, this class arranges timing events chronologically, determines the song time and BPM at each
event, then extrapolates from those calculated values for each bpm_at() / time_at() / beat_at() call.

timing_data :simfile.timing.TimingData

bpm_at(self, beat: simfile.timing.Beat)→ decimal.Decimal
Find the song’s BPM at a given beat.

Neither warps, stops, nor delays affect the output of this method: warps are not considered “infinite BPM”,
nor are pauses considered “zero BPM”.

hittable(self, beat: simfile.timing.Beat)→ bool
Determine if a note on the given beat would be hittable.

A note is considered “unhittable” if and only if:

• It takes place inside a warp segment (inclusive of the warp’s start, exclusive of the warp’s end).

• It doesn’t coincide with a stop or delay.

StepMania internally converts unhittable notes to fake notes so that the player’s score isn’t affected by
them.

time_at(self, beat: simfile.timing.Beat, event_tag: EventTag = EventTag.STOP)→ SongTime
Determine the song time at a given beat.

On most beats, the event_tag parameter is inconsequential. The only time it matters is when stops or delays
are involved:

• On stops, providing a value of EventTag.STOP or lower will return the time at which the stop is
reached, whereas providing EventTag.STOP_END will return the time when the stop ends.

• On delays, providing a value of EventTag.DELAY or lower will return the time at which the delay
is reached, whereas providing EventTag.DELAY_END or later will return the time when the delay
ends.

3.8. API Reference 43

simfile, Release 2.1.1

The default value of EventTag.STOP effectively matches the time at which a note on the given beat
must be hit (assuming such a note is hittable()).

beat_at(self, time: SongTimeOrFloat, event_tag: EventTag = EventTag.STOP)→ simfile.timing.Beat
Determine the beat at a given time in the song.

At most times, the event_tag parameter is inconsequential. The only time it matters is when the time lands
exactly on a warp segment:

• Providing EventTag.WARP will return the beat where the warp starts.

• Providing EventTag.WARP_END or later will return the beat where the warp ends (or is interrupted
by a stop or delay).

Keep in mind that this situation is floating-point precise, so it’s unlikely for the event_tag to ever make a
difference.

Package Contents

Classes

Beat A fractional beat value, denoting vertical position in a
simfile.

BeatValue An event that occurs on a particular beat, e.g. a BPM
change or stop.

BeatValues A list of BeatValue instances.
TimingData Timing data for a simfile, possibly enriched with SSC

chart timing.

class simfile.timing.Beat
Bases: fractions.Fraction

A fractional beat value, denoting vertical position in a simfile.

The constructor the same arguments as Python’s Fraction:

Takes a string like ‘3/2’ or ‘1.5’, another Rational instance, a numerator/denominator pair, or a float.

If the input is a float or string, the resulting fraction will be rounded to the nearest tick().

classmethod tick(cls)→ Beat
1/48 of a beat (1/192 of a measure).

classmethod from_str(cls, beat_str)→ Beat
Convert a decimal string to a beat, rounding to the nearest tick.

round_to_tick(self)→ Beat
Round the beat to the nearest tick.

class simfile.timing.BeatValue
Bases: NamedTuple

An event that occurs on a particular beat, e.g. a BPM change or stop.

The decimal value’s semantics vary based on the type of event:

• BPMS: the new BPM value

• STOPS, DELAYS: number of seconds to pause

44 Chapter 3. Further reading

simfile, Release 2.1.1

• WARPS: number of beats to skip

beat :Beat

value :decimal.Decimal

class simfile.timing.BeatValues(initlist=None)
Bases: simfile._private.generic.ListWithRepr[BeatValue]

A list of BeatValue instances.

classmethod from_str(cls: Type[BeatValues], string: Optional[str])→ BeatValues
Parse the MSD value component of a timing data list.

Specifically, BPMS, STOPS, DELAYS, and WARPS are the timing data lists whose values can be parsed by
this method.

class simfile.timing.TimingData(simfile: simfile.types.Simfile, chart: Op-
tional[simfile.types.Chart] = None)

Timing data for a simfile, possibly enriched with SSC chart timing.

If both an SSCSimfile (version 0.7 or higher) and an SSCChart are supplied to the constructor, and if the
chart contains any timing fields, the chart will be used as the source of timing data.

Per StepMania’s behavior, the offset defaults to zero if the simfile (and/or SSC chart) doesn’t specify one.
(However, unlike StepMania, the BPM does not default to 60 when omitted; the default BPM doesn’t appear to
be used deliberately in any existing simfiles, whereas the default offset does get used intentionally from time to
time.)

bpms :BeatValues

stops :BeatValues

delays :BeatValues

warps :BeatValues

offset :decimal.Decimal

Submodules

simfile.assets

Module Contents

Classes

Assets Asset loader for a simfile directory.

class simfile.assets.Assets(simfile_dir: str, *, simfile: Optional[simfile.types.Simfile] = None,
filesystem: fs.base.FS = NativeOSFS(), **kwargs)

Asset loader for a simfile directory.

This loader uses the same heuristics as StepMania to determine a default path for assets not specified in the
simfile. For example, if the BACKGROUND property is missing or blank, StepMania will look for an image
whose filename contains “background” or ends with “bg”.

The simfile will be loaded from the simfile_dir unless an explicit simfile argument is supplied. This is
intended mostly as an optimization for when the simfile has already been loaded from disk.

3.8. API Reference 45

simfile, Release 2.1.1

All asset paths are absolute and normalized. Keyword arguments are passed down to simfile.open() (and
are only valid if simfile is not provided).

property music(self)

property banner(self)

property background(self)

property cdtitle(self)

property jacket(self)

property cdimage(self)

property disc(self)

simfile.base

Base classes for simfile & chart implementations.

This module should ideally never need to be used directly, but its documentation may be useful for understanding the
similarities between the SM and SSC formats.

Module Contents

Classes

BaseChart One chart from a simfile.
BaseCharts List containing all of a simfile’s charts.
BaseSimfile A simfile, including its metadata (e.g. song title) and

charts.

class simfile.base.BaseChart
Bases: collections.OrderedDict, simfile._private.serializable.Serializable

One chart from a simfile.

All charts have the following known properties: stepstype, description, difficulty, meter, radarvalues, and notes.

stepstype

description

difficulty

meter

radarvalues

notes

classmethod blank(cls)
Generate a blank, valid chart populated with standard keys.

This should approximately match blank charts produced by the StepMania editor.

class simfile.base.BaseCharts(data=None)
Bases: simfile._private.generic.ListWithRepr[simfile._private.generic.E],

46 Chapter 3. Further reading

simfile, Release 2.1.1

simfile._private.serializable.Serializable

List containing all of a simfile’s charts.

serialize(self, file: TextIO)
Write the object to provided text file object as MSD.

class simfile.base.BaseSimfile(*, file: Optional[Union[TextIO, Iterator[str]]] = None, string:
Optional[str] = None, strict: bool = True)

Bases: collections.OrderedDict, simfile._private.serializable.Serializable

A simfile, including its metadata (e.g. song title) and charts.

Metadata is stored directly on the simfile object through a dict-like interface. Keys are unique (if there are
duplicates, the last value wins) and converted to uppercase.

Additionally, properties recognized by the current stable version of StepMania are exposed through lower-case
properties on the object for easy (and implicitly spell-checked) access. The following known properties are
defined:

• Metadata: title, subtitle, artist, titletranslit, subtitletranslit, artisttranslit, genre, credit, samplestart, sam-
plelength, selectable, instrumenttrack, timesignatures

• File paths: banner, background, lyricspath, cdtitle, music

• Gameplay events: bgchanges, fgchanges, keysounds, attacks, tickcounts

• Timing data: offset, bpms, stops, delays

If a desired simfile property isn’t in this list, it can still be accessed as a dict item.

By default, the underlying parser will throw an exception if it finds any stray text between parameters. This
behavior can be overridden by setting strict to False in the constructor.

MULTI_VALUE_PROPERTIES = ['ATTACKS', 'DISPLAYBPM']

title

subtitle

artist

titletranslit

subtitletranslit

artisttranslit

genre

credit

banner

background

lyricspath

cdtitle

music

offset

bpms

stops

delays

3.8. API Reference 47

simfile, Release 2.1.1

timesignatures

tickcounts

instrumenttrack

samplestart

samplelength

displaybpm

selectable

bgchanges

fgchanges

keysounds

attacks

property charts(self)→ BaseCharts
List of charts associated with this simfile.

classmethod blank(cls)
Generate a blank, valid simfile populated with standard keys.

This should approximately match the simfile produced by the StepMania editor in a directory with no .sm
or .ssc files.

serialize(self, file: TextIO)
Write the object to provided text file object as MSD.

simfile.convert

Functions for converting SM to SSC simfiles and vice-versa.

Module Contents

Classes

PropertyType Types of known properties.
InvalidPropertyBehavior How to handle an invalid property during conversion.

Functions

sm_to_ssc(sm_simfile: simfile.sm.SMSimfile, *,
simfile_template: Optional[simfile.ssc.SSCSimfile] =
None, chart_template: Optional[simfile.ssc.SSCChart]
= None) → simfile.ssc.SSCSimfile

Convert an SM simfile to an equivalent SSC simfile.

continues on next page

48 Chapter 3. Further reading

simfile, Release 2.1.1

Table 17 – continued from previous page
ssc_to_sm(ssc_simfile: simfile.ssc.SSCSimfile, *,
simfile_template: Optional[simfile.sm.SMSimfile] =
None, chart_template: Optional[simfile.sm.SMChart] =
None, invalid_property_behaviors: InvalidPropertyBe-
haviorMapping = {}) → simfile.sm.SMSimfile

Convert an SSC simfile to an equivalent SM simfile.

class simfile.convert.PropertyType
Bases: enum.Enum

Types of known properties.

These roughly mirror the lists of known properties documented in BaseSimfile and SSCSimfile.

SSC_VERSION = 1
The SSC version tag.

METADATA = 2
Properties that don’t affect the gameplay.

FILE_PATH = 3
Properties that reference file paths (e.g. images).

GAMEPLAY_EVENT = 4
Properties that affect gameplay in some fashion.

TIMING_DATA = 5
Properties that influence when notes must be hit.

class simfile.convert.InvalidPropertyBehavior
Bases: enum.Enum

How to handle an invalid property during conversion.

COPY_ANYWAY = 1
Copy the property regardless of the destination type.

IGNORE = 2
Do not copy the property.

ERROR_UNLESS_DEFAULT = 3
Raise InvalidPropertyException unless the property’s value is the default for its field.

The “default value” for most properties is an empty string. If the destination type’s .blank output has a
non-empty value for the property, that value is considered the default instead.

ERROR = 4
Raise InvalidPropertyException regardless of the value.

exception simfile.convert.InvalidPropertyException
Bases: Exception

Raised by conversion functions if a property cannot be converted.

simfile.convert.sm_to_ssc(sm_simfile: simfile.sm.SMSimfile, *, simfile_template: Op-
tional[simfile.ssc.SSCSimfile] = None, chart_template: Op-
tional[simfile.ssc.SSCChart] = None)→ simfile.ssc.SSCSimfile

Convert an SM simfile to an equivalent SSC simfile.

simfile_template and chart_template can optionally be provided to define the initial simfile and chart prior
to copying properties from the source object. If they are not provided, SSCSimfile.blank() and
SSCChart.blank() will supply the template objects.

3.8. API Reference 49

simfile, Release 2.1.1

simfile.convert.ssc_to_sm(ssc_simfile: simfile.ssc.SSCSimfile, *, simfile_template: Op-
tional[simfile.sm.SMSimfile] = None, chart_template: Op-
tional[simfile.sm.SMChart] = None, invalid_property_behaviors:
InvalidPropertyBehaviorMapping = {})→ simfile.sm.SMSimfile

Convert an SSC simfile to an equivalent SM simfile.

simfile_template and chart_template can optionally be provided to define the initial simfile and chart prior to
copying properties from the source object. If they are not provided, SMSimfile.blank() and SMChart.
blank() will supply the template objects.

Not all SSC properties are valid for SM simfiles, including some gameplay events and timing data. If one of
those types of properties are found and contain a non-default value, InvalidPropertyException will be
raised.

The behavior described above can be changed by supplying the invalid_property_behaviors parameter, which
maps PropertyType to InvalidPropertyBehavior values. This mapping need not cover every
PropertyType; any missing values will fall back to the default mapping described above.

simfile.dir

Module Contents

Classes

SimfileDirectory A simfile directory, containing an SM and/or SSC file,
or neither.

SimfilePack A simfile pack directory, containing any number of sim-
file directories.

exception simfile.dir.DuplicateSimfileError
Bases: Exception

Raised when a simfile directory contains multiple simfiles of the same type (e.g. two SM files).

class simfile.dir.SimfileDirectory(simfile_dir: str, *, filesystem: fs.base.FS = NativeOSFS(),
ignore_duplicate=False)

A simfile directory, containing an SM and/or SSC file, or neither.

Raises DuplicateSimfileError if the directory contains multiple simfiles of the same type (e.g. two SM
files).

sm_path :Optional[str]
Absolute path to the SM file, if present.

ssc_path :Optional[str]
Absolute path to the SSC file, if present.

property simfile_path(self)
The SSC path if present, otherwise the SM path.

open(self, **kwargs)→ simfile.types.Simfile
Open the simfile in this directory.

If both SSC and SM are present, SSC is preferred. Keyword arguments are passed down to simfile.
open().

Raises FileNotFoundError if there is no SM or SSC file in the directory.

50 Chapter 3. Further reading

simfile, Release 2.1.1

assets(self)→ simfile.assets.Assets
Get the file assets for this simfile.

class simfile.dir.SimfilePack(pack_dir: str, *, filesystem: fs.base.FS = NativeOSFS(), ig-
nore_duplicate: bool = False)

A simfile pack directory, containing any number of simfile directories.

Only immediate subdirectories of pack_dir containing an SM or SSC file are included. Simfiles aren’t guar-
anteed to appear in any particular order.

simfile_dir_paths :Tuple[str]
Absolute paths to the simfile directories in this pack.

simfile_dirs(self)→ Iterator[SimfileDirectory]
Iterator over the simfile directories in the pack.

simfiles(self, **kwargs)→ Iterator[simfile.types.Simfile]
Iterator over the simfiles in the pack.

If both SSC and SM are present in a simfile directory, SSC is preferred. Keyword arguments are passed
down to simfile.open().

property name(self)
Get the name of the pack (the directory name by itself).

banner(self)→ Optional[str]
Get the pack’s banner image, if present, as an absolute path.

Follows the same logic as StepMania:

• When there are multiple images in the pack directory, the banner is chosen first by extension priority
(PNG is highest, then JPG, JPEG, GIF, BMP), then alphabetically.

• If there are no images in the pack directory, checks for a banner alongside the pack with the same
base name, using the same extension priority as before.

simfile.sm

Simfile & chart classes for SM files.

Module Contents

Classes

SMChart SM implementation of BaseChart.
SMCharts SM implementation of BaseCharts.
SMSimfile SM implementation of BaseSimfile.

class simfile.sm.SMChart
Bases: simfile.base.BaseChart

SM implementation of BaseChart.

Unlike SSCChart, SM chart metadata is stored as a fixed list of 6 properties, so this class prohibits adding or
deleting keys from its backing OrderedDict.

extradata :Optional[List[str]]
If the chart data contains more than 6 components, the extra components will be stored in this attribute.

3.8. API Reference 51

simfile, Release 2.1.1

classmethod blank(cls: Type[SMChart])→ SMChart
Generate a blank, valid chart populated with standard keys.

This should approximately match blank charts produced by the StepMania editor.

classmethod from_str(cls: Type[SMChart], string: str)→ SMChart
Parse the serialized MSD value components of a NOTES property.

The string should contain six colon-separated components, corresponding to each of the base known prop-
erties documented in BaseChart. Any additional components will be stored in extradata.

Raises ValueError if the string contains fewer than six components.

Deprecated since version 2.1: This is now a less efficient version of from_msd(), which interoperates
better with msdparser version 2.0.

classmethod from_msd(cls: Type[SMChart], values: Sequence[str])→ SMChart
Parse the MSD value components of a NOTES property.

The list should contain six strings, corresponding to each of the base known properties documented in
BaseChart. Any additional components will be stored in extradata.

Raises ValueError if the list contains fewer than six components.

serialize(self, file)
Write the object to provided text file object as MSD.

abstract update(self, *args, **kwargs)→ None
Raises NotImplementedError.

abstract pop(self, property, default=None)
Raises NotImplementedError.

abstract popitem(self, last=True)
Raises NotImplementedError.

class simfile.sm.SMCharts(data=None)
Bases: simfile.base.BaseCharts[SMChart]

SM implementation of BaseCharts.

List elements are SMChart instances.

class simfile.sm.SMSimfile(*, file: Optional[Union[TextIO, Iterator[str]]] = None, string: Op-
tional[str] = None, strict: bool = True)

Bases: simfile.base.BaseSimfile

SM implementation of BaseSimfile.

stops
Specialized property for STOPS that supports FREEZES as an alias.

classmethod blank(cls: Type[SMSimfile])→ SMSimfile
Generate a blank, valid simfile populated with standard keys.

This should approximately match the simfile produced by the StepMania editor in a directory with no .sm
or .ssc files.

property charts(self)→ SMCharts
List of charts associated with this simfile.

52 Chapter 3. Further reading

simfile, Release 2.1.1

simfile.ssc

Simfile & chart classes for SSC files.

Module Contents

Classes

SSCChart SSC implementation of BaseChart.
SSCCharts SSC implementation of BaseCharts.
SSCSimfile SSC implementation of BaseSimfile.

class simfile.ssc.SSCChart
Bases: simfile.base.BaseChart

SSC implementation of BaseChart.

Unlike SMChart, SSC chart metadata is stored as key-value pairs, so this class allows full modification of its
backing OrderedDict.

Adds the following known properties:

• Metadata: chartname, chartstyle, credit, timesignatures

• File paths: music

• Gameplay events: tickcounts, combos, speeds, scrolls, fakes, attacks

• Timing data: bpms, stops, delays, warps, labels, offset, displaybpm

chartname

chartstyle

credit

music

bpms

stops

delays

timesignatures

tickcounts

combos

warps

speeds

scrolls

fakes

labels

attacks

offset

3.8. API Reference 53

simfile, Release 2.1.1

displaybpm

notes

classmethod from_str(cls: Type[SSCChart], string: str, strict: bool = True)→ SSCChart
Parse a string containing MSD data into an SSC chart.

The first property’s key must be NOTEDATA. Parsing ends at the NOTES (or NOTES2) property.

By default, the underlying parser will throw an exception if it finds any stray text between parameters.
This behavior can be overridden by setting strict to False.

classmethod blank(cls: Type[SSCChart])→ SSCChart
Generate a blank, valid chart populated with standard keys.

This should approximately match blank charts produced by the StepMania editor.

serialize(self, file)
Write the object to provided text file object as MSD.

class simfile.ssc.SSCCharts(data=None)
Bases: simfile.base.BaseCharts[SSCChart]

SSC implementation of BaseCharts.

List elements are SSCChart instances.

class simfile.ssc.SSCSimfile(*, file: Optional[Union[TextIO, Iterator[str]]] = None, string: Op-
tional[str] = None, strict: bool = True)

Bases: simfile.base.BaseSimfile

SSC implementation of BaseSimfile.

Adds the following known properties:

• SSC version: version

• Metadata: origin, labels, musiclength, lastsecondhint

• File paths: previewvid, jacket, cdimage, discimage, preview

• Gameplay events: combos, speeds, scrolls, fakes

• Timing data: warps

version

origin

previewvid

jacket

cdimage

discimage

preview

musiclength

lastsecondhint

warps

labels

combos

speeds

54 Chapter 3. Further reading

simfile, Release 2.1.1

scrolls

fakes

classmethod blank(cls: Type[SSCSimfile])→ SSCSimfile
Generate a blank, valid simfile populated with standard keys.

This should approximately match the simfile produced by the StepMania editor in a directory with no .sm
or .ssc files.

property charts(self)→ SSCCharts
List of charts associated with this simfile.

simfile.types

Union types for simfile & chart classes.

Module Contents

simfile.types.Simfile
Union of SSCSimfile and SMSimfile.

simfile.types.Charts
Union of SSCCharts and SMCharts.

simfile.types.Chart
Union of SSCChart and SMChart.

Package Contents

Functions

load(file: Union[TextIO, Iterator[str]], strict: bool =
True) → types.Simfile

Load a text file object as a simfile.

loads(string: str, strict: bool = True) → types.Simfile Load a string containing simfile data as a simfile.
open(filename: str, strict: bool = True, filesystem:
fs.base.FS = NativeOSFS(), **kwargs) → types.Simfile

Load a simfile by filename.

open_with_detected_encoding(filename: str,
try_encodings: List[str] = ENCODINGS, strict: bool
= True, filesystem: fs.base.FS = NativeOSFS(),
**kwargs) → Tuple[types.Simfile, str]

Load a simfile by filename; returns the simfile and de-
tected encoding.

opendir(simfile_dir: str, filesystem: fs.base.FS = Na-
tiveOSFS(), **kwargs) → Tuple[types.Simfile, str]

Open a simfile from its directory path;

openpack(pack_dir: str, filesystem: fs.base.FS = Na-
tiveOSFS(), **kwargs) → Iterator[Tuple[types.Simfile,
str]]

Open a pack of simfiles from the pack’s directory path;

mutate(input_filename: str, output_filename: Op-
tional[str] = None, backup_filename: Optional[str] =
None, try_encodings: List[str] = ENCODINGS, strict:
bool = True, filesystem: fs.base.FS = NativeOSFS(),
**kwargs) → Iterator[types.Simfile]

Context manager that loads & saves a simfile by file-
name.

simfile.load(file: Union[TextIO, Iterator[str]], strict: bool = True)→ types.Simfile

3.8. API Reference 55

simfile, Release 2.1.1

Load a text file object as a simfile.

If the file object has a filename with a matching extension, it will be used to infer the correct implementation.
Otherwise, the first property in the file is peeked at. If its key is “VERSION”, the file is treated as an SSC
simfile; otherwise, it’s treated as an SM simfile.

simfile.loads(string: str, strict: bool = True)→ types.Simfile
Load a string containing simfile data as a simfile.

simfile.open(filename: str, strict: bool = True, filesystem: fs.base.FS = NativeOSFS(), **kwargs) →
types.Simfile

Load a simfile by filename.

Keyword arguments are passed to the builtin open function. If no encoding is specified, this function will defer
to open_with_detected_encoding().

simfile.open_with_detected_encoding(filename: str, try_encodings: List[str] = ENCOD-
INGS, strict: bool = True, filesystem: fs.base.FS = Na-
tiveOSFS(), **kwargs)→ Tuple[types.Simfile, str]

Load a simfile by filename; returns the simfile and detected encoding.

Tries decoding the simfile as UTF-8, CP1252 (English), CP932 (Japanese), and CP949 (Korean), mirroring the
encodings supported by StepMania. This list can be overridden by supplying try_encodings.

Keep in mind that no heuristics are performed to “guess” the correct encoding - this function simply tries each
encoding in order until one succeeds. As such, non-UTF-8 files may successfully parse as the wrong encoding,
resulting in mojibake. If you intend to write the simfile back to disk, make sure to use the same encoding that
was detected to preserve the true byte sequence.

In general, you only need to use this function directly if you need to know the file’s encoding. open() and
mutate() both defer to this function to detect the encoding behind the scenes.

simfile.opendir(simfile_dir: str, filesystem: fs.base.FS = NativeOSFS(), **kwargs) → Tu-
ple[types.Simfile, str]

Open a simfile from its directory path; returns a (simfile, filename) tuple.

If both SSC and SM are present, SSC is preferred. Keyword arguments are passed down to simfile.open().

If you need more flexibility (for example, if you need both the SM and SSC files), try using
SimfileDirectory .

simfile.openpack(pack_dir: str, filesystem: fs.base.FS = NativeOSFS(), **kwargs) → Itera-
tor[Tuple[types.Simfile, str]]

Open a pack of simfiles from the pack’s directory path; yields (simfile, filename) tuples.

Only immediate subdirectories of pack_dir containing an SM or SSC file are included. Simfiles aren’t guar-
anteed to appear in any particular order. If both SSC and SM are present, SSC is preferred. Keyword arguments
are passed down to simfile.open().

If you need more flexibility (for example, if you need the pack’s banner, or both the SM and SSC files), try using
SimfilePack.

exception simfile.CancelMutation
Bases: BaseException

Raise from inside a mutate() block to prevent saving the simfile.

simfile.mutate(input_filename: str, output_filename: Optional[str] = None, backup_filename: Op-
tional[str] = None, try_encodings: List[str] = ENCODINGS, strict: bool = True, filesys-
tem: fs.base.FS = NativeOSFS(), **kwargs)→ Iterator[types.Simfile]

Context manager that loads & saves a simfile by filename.

If an output_filename is provided, the modified simfile will be written to that filename upon exit from the context
manager. Otherwise, it will be written back to the input_filename.

56 Chapter 3. Further reading

simfile, Release 2.1.1

If a backup_filename is provided, the original simfile will be written to that filename upon exit from the context
manager. Otherwise, no backup copy will be written. backup_filename must be distinct from input_filename
and output_filename if present.

If the context manager catches an exception, nothing will be written to disk, and the exception will be re-thrown.
To prevent saving without causing the context manager to re-throw an exception, raise CancelMutation.

Keyword arguments are passed to the builtin open function. Uses open_with_detected_encoding()
to detect & preserve the encoding. The list of encodings can be overridden by supplying try_encodings.

3.8. API Reference 57

simfile, Release 2.1.1

58 Chapter 3. Further reading

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

59

simfile, Release 2.1.1

60 Chapter 4. Indices and tables

PYTHON MODULE INDEX

s
simfile, 33
simfile.assets, 45
simfile.base, 46
simfile.convert, 48
simfile.dir, 50
simfile.notes, 34
simfile.notes.count, 34
simfile.notes.group, 36
simfile.notes.timed, 38
simfile.sm, 51
simfile.ssc, 53
simfile.timing, 41
simfile.timing.displaybpm, 41
simfile.timing.engine, 42
simfile.types, 55

61

simfile, Release 2.1.1

62 Python Module Index

INDEX

A
artist (simfile.base.BaseSimfile attribute), 47
artisttranslit (simfile.base.BaseSimfile attribute),

47
Assets (class in simfile.assets), 45
assets() (simfile.dir.SimfileDirectory method), 50
ATTACK (simfile.notes.NoteType attribute), 40
attacks (simfile.base.BaseSimfile attribute), 48
attacks (simfile.ssc.SSCChart attribute), 53

B
background (simfile.base.BaseSimfile attribute), 47
background() (simfile.assets.Assets property), 46
banner (simfile.base.BaseSimfile attribute), 47
banner() (simfile.assets.Assets property), 46
banner() (simfile.dir.SimfilePack method), 51
BaseChart (class in simfile.base), 46
BaseCharts (class in simfile.base), 46
BaseSimfile (class in simfile.base), 47
Beat (class in simfile.timing), 44
beat (simfile.notes.group.NoteWithTail attribute), 37
beat (simfile.notes.Note attribute), 40
beat (simfile.timing.BeatValue attribute), 45
beat_at() (simfile.timing.engine.TimingEngine

method), 44
BeatValue (class in simfile.timing), 44
BeatValues (class in simfile.timing), 45
bgchanges (simfile.base.BaseSimfile attribute), 48
blank() (simfile.base.BaseChart class method), 46
blank() (simfile.base.BaseSimfile class method), 48
blank() (simfile.sm.SMChart class method), 51
blank() (simfile.sm.SMSimfile class method), 52
blank() (simfile.ssc.SSCChart class method), 54
blank() (simfile.ssc.SSCSimfile class method), 55
BPM (simfile.timing.engine.EventTag attribute), 43
bpm_at() (simfile.timing.engine.TimingEngine

method), 43
bpms (simfile.base.BaseSimfile attribute), 47
bpms (simfile.ssc.SSCChart attribute), 53
bpms (simfile.timing.TimingData attribute), 45

C
CancelMutation, 56
cdimage (simfile.ssc.SSCSimfile attribute), 54
cdimage() (simfile.assets.Assets property), 46
cdtitle (simfile.base.BaseSimfile attribute), 47
cdtitle() (simfile.assets.Assets property), 46
Chart (in module simfile.types), 55
chartname (simfile.ssc.SSCChart attribute), 53
Charts (in module simfile.types), 55
charts() (simfile.base.BaseSimfile property), 48
charts() (simfile.sm.SMSimfile property), 52
charts() (simfile.ssc.SSCSimfile property), 55
chartstyle (simfile.ssc.SSCChart attribute), 53
column (simfile.notes.group.NoteWithTail attribute), 37
column (simfile.notes.Note attribute), 40
columns() (simfile.notes.NoteData property), 40
combos (simfile.ssc.SSCChart attribute), 53
combos (simfile.ssc.SSCSimfile attribute), 54
COPY_ANYWAY (simfile.convert.InvalidPropertyBehavior

attribute), 49
count_grouped_notes() (in module sim-

file.notes.count), 34
count_hands() (in module simfile.notes.count), 35
count_holds() (in module simfile.notes.count), 35
count_jumps() (in module simfile.notes.count), 35
count_mines() (in module simfile.notes.count), 35
count_rolls() (in module simfile.notes.count), 35
count_steps() (in module simfile.notes.count), 35
credit (simfile.base.BaseSimfile attribute), 47
credit (simfile.ssc.SSCChart attribute), 53

D
DELAY (simfile.timing.engine.EventTag attribute), 43
DELAY_END (simfile.timing.engine.EventTag attribute),

43
delays (simfile.base.BaseSimfile attribute), 47
delays (simfile.ssc.SSCChart attribute), 53
delays (simfile.timing.TimingData attribute), 45
description (simfile.base.BaseChart attribute), 46
difficulty (simfile.base.BaseChart attribute), 46
disc() (simfile.assets.Assets property), 46
discimage (simfile.ssc.SSCSimfile attribute), 54

63

simfile, Release 2.1.1

DisplayBPM (in module simfile.timing.displaybpm), 42
displaybpm (simfile.base.BaseSimfile attribute), 48
displaybpm (simfile.ssc.SSCChart attribute), 53
displaybpm() (in module simfile.timing.displaybpm),

42
DROP_NOTE (simfile.notes.timed.UnhittableNotes

attribute), 39
DROP_ORPHAN (simfile.notes.group.OrphanedNotes at-

tribute), 38
DuplicateSimfileError, 50

E
ERROR (simfile.convert.InvalidPropertyBehavior at-

tribute), 49
ERROR_UNLESS_DEFAULT (sim-

file.convert.InvalidPropertyBehavior attribute),
49

EventTag (class in simfile.timing.engine), 42
extradata (simfile.sm.SMChart attribute), 51

F
FAKE (simfile.notes.NoteType attribute), 40
fakes (simfile.ssc.SSCChart attribute), 53
fakes (simfile.ssc.SSCSimfile attribute), 55
fgchanges (simfile.base.BaseSimfile attribute), 48
FILE_PATH (simfile.convert.PropertyType attribute), 49
from_msd() (simfile.sm.SMChart class method), 52
from_notes() (simfile.notes.NoteData class method),

40
from_str() (simfile.sm.SMChart class method), 52
from_str() (simfile.ssc.SSCChart class method), 54
from_str() (simfile.timing.Beat class method), 44
from_str() (simfile.timing.BeatValues class method),

45

G
GAMEPLAY_EVENT (simfile.convert.PropertyType at-

tribute), 49
genre (simfile.base.BaseSimfile attribute), 47
group_notes() (in module simfile.notes.group), 38
GroupedNotes (in module simfile.notes.group), 37

H
hittable() (simfile.timing.engine.TimingEngine

method), 43
HOLD_HEAD (simfile.notes.NoteType attribute), 40

I
IGNORE (simfile.convert.InvalidPropertyBehavior

attribute), 49
instrumenttrack (simfile.base.BaseSimfile at-

tribute), 48
InvalidPropertyBehavior (class in sim-

file.convert), 49

InvalidPropertyException, 49

J
jacket (simfile.ssc.SSCSimfile attribute), 54
jacket() (simfile.assets.Assets property), 46
JOIN_ALL (simfile.notes.group.SameBeatNotes at-

tribute), 37
JOIN_BY_NOTE_TYPE (sim-

file.notes.group.SameBeatNotes attribute),
37

K
KEEP_NOTE (simfile.notes.timed.UnhittableNotes

attribute), 39
KEEP_ORPHAN (simfile.notes.group.OrphanedNotes at-

tribute), 38
KEEP_SEPARATE (simfile.notes.group.SameBeatNotes

attribute), 37
KEYSOUND (simfile.notes.NoteType attribute), 40
keysound_index (simfile.notes.group.NoteWithTail

attribute), 37
keysound_index (simfile.notes.Note attribute), 40
keysounds (simfile.base.BaseSimfile attribute), 48

L
labels (simfile.ssc.SSCChart attribute), 53
labels (simfile.ssc.SSCSimfile attribute), 54
lastsecondhint (simfile.ssc.SSCSimfile attribute),

54
LIFT (simfile.notes.NoteType attribute), 40
load() (in module simfile), 55
loads() (in module simfile), 56
lyricspath (simfile.base.BaseSimfile attribute), 47

M
max (simfile.timing.displaybpm.RangeDisplayBPM at-

tribute), 42
max() (simfile.timing.displaybpm.RandomDisplayBPM

property), 42
max() (simfile.timing.displaybpm.StaticDisplayBPM

property), 41
METADATA (simfile.convert.PropertyType attribute), 49
meter (simfile.base.BaseChart attribute), 46
min (simfile.timing.displaybpm.RangeDisplayBPM at-

tribute), 42
min() (simfile.timing.displaybpm.RandomDisplayBPM

property), 42
min() (simfile.timing.displaybpm.StaticDisplayBPM

property), 41
MINE (simfile.notes.NoteType attribute), 40
module

simfile, 33
simfile.assets, 45
simfile.base, 46

64 Index

simfile, Release 2.1.1

simfile.convert, 48
simfile.dir, 50
simfile.notes, 34
simfile.notes.count, 34
simfile.notes.group, 36
simfile.notes.timed, 38
simfile.sm, 51
simfile.ssc, 53
simfile.timing, 41
simfile.timing.displaybpm, 41
simfile.timing.engine, 42
simfile.types, 55

MULTI_VALUE_PROPERTIES (sim-
file.base.BaseSimfile attribute), 47

music (simfile.base.BaseSimfile attribute), 47
music (simfile.ssc.SSCChart attribute), 53
music() (simfile.assets.Assets property), 46
musiclength (simfile.ssc.SSCSimfile attribute), 54
mutate() (in module simfile), 56

N
name() (simfile.dir.SimfilePack property), 51
Note (class in simfile.notes), 40
note (simfile.notes.timed.TimedNote attribute), 39
note_type (simfile.notes.group.NoteWithTail at-

tribute), 37
note_type (simfile.notes.Note attribute), 40
NoteData (class in simfile.notes), 40
notes (simfile.base.BaseChart attribute), 46
notes (simfile.ssc.SSCChart attribute), 54
NoteType (class in simfile.notes), 39
NoteWithTail (class in simfile.notes.group), 37

O
offset (simfile.base.BaseSimfile attribute), 47
offset (simfile.ssc.SSCChart attribute), 53
offset (simfile.timing.TimingData attribute), 45
open() (in module simfile), 56
open() (simfile.dir.SimfileDirectory method), 50
open_with_detected_encoding() (in module

simfile), 56
opendir() (in module simfile), 56
openpack() (in module simfile), 56
origin (simfile.ssc.SSCSimfile attribute), 54
OrphanedNoteException, 37
OrphanedNotes (class in simfile.notes.group), 37

P
player (simfile.notes.group.NoteWithTail attribute), 37
player (simfile.notes.Note attribute), 40
pop() (simfile.sm.SMChart method), 52
popitem() (simfile.sm.SMChart method), 52
preview (simfile.ssc.SSCSimfile attribute), 54
previewvid (simfile.ssc.SSCSimfile attribute), 54

PropertyType (class in simfile.convert), 49

R
radarvalues (simfile.base.BaseChart attribute), 46
RAISE_EXCEPTION (sim-

file.notes.group.OrphanedNotes attribute),
37

RandomDisplayBPM (class in sim-
file.timing.displaybpm), 42

range() (simfile.timing.displaybpm.RandomDisplayBPM
property), 42

range() (simfile.timing.displaybpm.RangeDisplayBPM
property), 42

range() (simfile.timing.displaybpm.StaticDisplayBPM
property), 41

RangeDisplayBPM (class in sim-
file.timing.displaybpm), 41

ROLL_HEAD (simfile.notes.NoteType attribute), 40
round_to_tick() (simfile.timing.Beat method), 44

S
SameBeatNotes (class in simfile.notes.group), 37
samplelength (simfile.base.BaseSimfile attribute), 48
samplestart (simfile.base.BaseSimfile attribute), 48
scrolls (simfile.ssc.SSCChart attribute), 53
scrolls (simfile.ssc.SSCSimfile attribute), 55
selectable (simfile.base.BaseSimfile attribute), 48
serialize() (simfile.base.BaseCharts method), 47
serialize() (simfile.base.BaseSimfile method), 48
serialize() (simfile.sm.SMChart method), 52
serialize() (simfile.ssc.SSCChart method), 54
simfile

module, 33
Simfile (in module simfile.types), 55
simfile.assets

module, 45
simfile.base

module, 46
simfile.convert

module, 48
simfile.dir

module, 50
simfile.notes

module, 34
simfile.notes.count

module, 34
simfile.notes.group

module, 36
simfile.notes.timed

module, 38
simfile.sm

module, 51
simfile.ssc

module, 53

Index 65

simfile, Release 2.1.1

simfile.timing
module, 41

simfile.timing.displaybpm
module, 41

simfile.timing.engine
module, 42

simfile.types
module, 55

simfile_dir_paths (simfile.dir.SimfilePack at-
tribute), 51

simfile_dirs() (simfile.dir.SimfilePack method), 51
simfile_path() (simfile.dir.SimfileDirectory prop-

erty), 50
SimfileDirectory (class in simfile.dir), 50
SimfilePack (class in simfile.dir), 51
simfiles() (simfile.dir.SimfilePack method), 51
sm_path (simfile.dir.SimfileDirectory attribute), 50
sm_to_ssc() (in module simfile.convert), 49
SMChart (class in simfile.sm), 51
SMCharts (class in simfile.sm), 52
SMSimfile (class in simfile.sm), 52
SongTime (class in simfile.timing.engine), 42
speeds (simfile.ssc.SSCChart attribute), 53
speeds (simfile.ssc.SSCSimfile attribute), 54
ssc_path (simfile.dir.SimfileDirectory attribute), 50
ssc_to_sm() (in module simfile.convert), 49
SSC_VERSION (simfile.convert.PropertyType attribute),

49
SSCChart (class in simfile.ssc), 53
SSCCharts (class in simfile.ssc), 54
SSCSimfile (class in simfile.ssc), 54
StaticDisplayBPM (class in sim-

file.timing.displaybpm), 41
stepstype (simfile.base.BaseChart attribute), 46
STOP (simfile.timing.engine.EventTag attribute), 43
STOP_END (simfile.timing.engine.EventTag attribute),

43
stops (simfile.base.BaseSimfile attribute), 47
stops (simfile.sm.SMSimfile attribute), 52
stops (simfile.ssc.SSCChart attribute), 53
stops (simfile.timing.TimingData attribute), 45
subtitle (simfile.base.BaseSimfile attribute), 47
subtitletranslit (simfile.base.BaseSimfile at-

tribute), 47

T
TAIL (simfile.notes.NoteType attribute), 40
tail_beat (simfile.notes.group.NoteWithTail at-

tribute), 37
TAP (simfile.notes.NoteType attribute), 39
TAP_TO_FAKE (simfile.notes.timed.UnhittableNotes at-

tribute), 39
tick() (simfile.timing.Beat class method), 44
tickcounts (simfile.base.BaseSimfile attribute), 48

tickcounts (simfile.ssc.SSCChart attribute), 53
time (simfile.notes.timed.TimedNote attribute), 39
time_at() (simfile.timing.engine.TimingEngine

method), 43
time_notes() (in module simfile.notes.timed), 39
TimedNote (class in simfile.notes.timed), 39
timesignatures (simfile.base.BaseSimfile attribute),

47
timesignatures (simfile.ssc.SSCChart attribute), 53
TIMING_DATA (simfile.convert.PropertyType attribute),

49
timing_data (simfile.timing.engine.TimingEngine at-

tribute), 43
TimingData (class in simfile.timing), 45
TimingEngine (class in simfile.timing.engine), 43
title (simfile.base.BaseSimfile attribute), 47
titletranslit (simfile.base.BaseSimfile attribute),

47

U
ungroup_notes() (in module simfile.notes.group), 38
UnhittableNotes (class in simfile.notes.timed), 39
update() (simfile.sm.SMChart method), 52

V
value (simfile.timing.BeatValue attribute), 45
value (simfile.timing.displaybpm.StaticDisplayBPM at-

tribute), 41
value() (simfile.timing.displaybpm.RandomDisplayBPM

property), 42
value() (simfile.timing.displaybpm.RangeDisplayBPM

property), 42
version (simfile.ssc.SSCSimfile attribute), 54

W
WARP (simfile.timing.engine.EventTag attribute), 43
WARP_END (simfile.timing.engine.EventTag attribute),

43
warps (simfile.ssc.SSCChart attribute), 53
warps (simfile.ssc.SSCSimfile attribute), 54
warps (simfile.timing.TimingData attribute), 45

66 Index

	Installation
	Quickstart
	Further reading
	Indices and tables
	Python Module Index
	Index

